Cargando…
Spontaneous Transport Mechanics of Water Droplets under a Synergistic Action of Designed Pattern and Non-Wetting Gradient
[Image: see text] The controllable spontaneous transport of water droplets on solid surfaces has a broad application background in daily life. Herein, a patterned surface with two different non-wetting characteristics was developed to control the droplet transport behavior. Consequently, the pattern...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10173426/ https://www.ncbi.nlm.nih.gov/pubmed/37179628 http://dx.doi.org/10.1021/acsomega.3c01536 |
_version_ | 1785039814835306496 |
---|---|
author | Liu, Weilan Lu, Yang Shen, Yizhou Chen, Haifeng Ni, Yaru Xu, Yangjiangshan |
author_facet | Liu, Weilan Lu, Yang Shen, Yizhou Chen, Haifeng Ni, Yaru Xu, Yangjiangshan |
author_sort | Liu, Weilan |
collection | PubMed |
description | [Image: see text] The controllable spontaneous transport of water droplets on solid surfaces has a broad application background in daily life. Herein, a patterned surface with two different non-wetting characteristics was developed to control the droplet transport behavior. Consequently, the patterned surface exhibited great water-repellant properties in the superhydrophobic region, and the water contact angle reached 160° ± 0.2°. Meanwhile, the water contact angle on the wedge-shaped hydrophilic region dropped to 22° after UV irradiation treatment. On this basis, the maximum transport distance of water droplets could be observed on the sample surface with a small wedge angle of 5° (10.62 mm), and the maximum average transport velocity of droplets was obtained on the sample surface with a large wedge angle of 10° (218.01 mm/s). In terms of spontaneous droplet transport on an inclined surface (4°), both the 8 μL droplet and 50 μL droplet could move upward against gravity, which showed that the sample surface possessed an obvious driving force for droplet transport. Surface non-wetting gradient and the wedge-shaped pattern provided unbalanced surface tension to produce the driving forces in the process of droplet transport, and the Laplace pressure as well is produced inside the water droplet during this process. This work provides a new strategy to develop a patterned superhydrophobic surface for droplet transport. |
format | Online Article Text |
id | pubmed-10173426 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-101734262023-05-12 Spontaneous Transport Mechanics of Water Droplets under a Synergistic Action of Designed Pattern and Non-Wetting Gradient Liu, Weilan Lu, Yang Shen, Yizhou Chen, Haifeng Ni, Yaru Xu, Yangjiangshan ACS Omega [Image: see text] The controllable spontaneous transport of water droplets on solid surfaces has a broad application background in daily life. Herein, a patterned surface with two different non-wetting characteristics was developed to control the droplet transport behavior. Consequently, the patterned surface exhibited great water-repellant properties in the superhydrophobic region, and the water contact angle reached 160° ± 0.2°. Meanwhile, the water contact angle on the wedge-shaped hydrophilic region dropped to 22° after UV irradiation treatment. On this basis, the maximum transport distance of water droplets could be observed on the sample surface with a small wedge angle of 5° (10.62 mm), and the maximum average transport velocity of droplets was obtained on the sample surface with a large wedge angle of 10° (218.01 mm/s). In terms of spontaneous droplet transport on an inclined surface (4°), both the 8 μL droplet and 50 μL droplet could move upward against gravity, which showed that the sample surface possessed an obvious driving force for droplet transport. Surface non-wetting gradient and the wedge-shaped pattern provided unbalanced surface tension to produce the driving forces in the process of droplet transport, and the Laplace pressure as well is produced inside the water droplet during this process. This work provides a new strategy to develop a patterned superhydrophobic surface for droplet transport. American Chemical Society 2023-04-28 /pmc/articles/PMC10173426/ /pubmed/37179628 http://dx.doi.org/10.1021/acsomega.3c01536 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Liu, Weilan Lu, Yang Shen, Yizhou Chen, Haifeng Ni, Yaru Xu, Yangjiangshan Spontaneous Transport Mechanics of Water Droplets under a Synergistic Action of Designed Pattern and Non-Wetting Gradient |
title | Spontaneous Transport
Mechanics of Water Droplets
under a Synergistic Action of Designed Pattern and Non-Wetting Gradient |
title_full | Spontaneous Transport
Mechanics of Water Droplets
under a Synergistic Action of Designed Pattern and Non-Wetting Gradient |
title_fullStr | Spontaneous Transport
Mechanics of Water Droplets
under a Synergistic Action of Designed Pattern and Non-Wetting Gradient |
title_full_unstemmed | Spontaneous Transport
Mechanics of Water Droplets
under a Synergistic Action of Designed Pattern and Non-Wetting Gradient |
title_short | Spontaneous Transport
Mechanics of Water Droplets
under a Synergistic Action of Designed Pattern and Non-Wetting Gradient |
title_sort | spontaneous transport
mechanics of water droplets
under a synergistic action of designed pattern and non-wetting gradient |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10173426/ https://www.ncbi.nlm.nih.gov/pubmed/37179628 http://dx.doi.org/10.1021/acsomega.3c01536 |
work_keys_str_mv | AT liuweilan spontaneoustransportmechanicsofwaterdropletsunderasynergisticactionofdesignedpatternandnonwettinggradient AT luyang spontaneoustransportmechanicsofwaterdropletsunderasynergisticactionofdesignedpatternandnonwettinggradient AT shenyizhou spontaneoustransportmechanicsofwaterdropletsunderasynergisticactionofdesignedpatternandnonwettinggradient AT chenhaifeng spontaneoustransportmechanicsofwaterdropletsunderasynergisticactionofdesignedpatternandnonwettinggradient AT niyaru spontaneoustransportmechanicsofwaterdropletsunderasynergisticactionofdesignedpatternandnonwettinggradient AT xuyangjiangshan spontaneoustransportmechanicsofwaterdropletsunderasynergisticactionofdesignedpatternandnonwettinggradient |