Cargando…

Machine Learning-Driven Multiscale Modeling: Bridging the Scales with a Next-Generation Simulation Infrastructure

[Image: see text] Interdependence across time and length scales is common in biology, where atomic interactions can impact larger-scale phenomenon. Such dependence is especially true for a well-known cancer signaling pathway, where the membrane-bound RAS protein binds an effector protein called RAF....

Descripción completa

Detalles Bibliográficos
Autores principales: Ingólfsson, Helgi I., Bhatia, Harsh, Aydin, Fikret, Oppelstrup, Tomas, López, Cesar A., Stanton, Liam G., Carpenter, Timothy S., Wong, Sergio, Di Natale, Francesco, Zhang, Xiaohua, Moon, Joseph Y., Stanley, Christopher B., Chavez, Joseph R., Nguyen, Kien, Dharuman, Gautham, Burns, Violetta, Shrestha, Rebika, Goswami, Debanjan, Gulten, Gulcin, Van, Que N., Ramanathan, Arvind, Van Essen, Brian, Hengartner, Nicolas W., Stephen, Andrew G., Turbyville, Thomas, Bremer, Peer-Timo, Gnanakaran, S., Glosli, James N., Lightstone, Felice C., Nissley, Dwight V., Streitz, Frederick H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10173464/
https://www.ncbi.nlm.nih.gov/pubmed/37075065
http://dx.doi.org/10.1021/acs.jctc.2c01018
_version_ 1785039823442018304
author Ingólfsson, Helgi I.
Bhatia, Harsh
Aydin, Fikret
Oppelstrup, Tomas
López, Cesar A.
Stanton, Liam G.
Carpenter, Timothy S.
Wong, Sergio
Di Natale, Francesco
Zhang, Xiaohua
Moon, Joseph Y.
Stanley, Christopher B.
Chavez, Joseph R.
Nguyen, Kien
Dharuman, Gautham
Burns, Violetta
Shrestha, Rebika
Goswami, Debanjan
Gulten, Gulcin
Van, Que N.
Ramanathan, Arvind
Van Essen, Brian
Hengartner, Nicolas W.
Stephen, Andrew G.
Turbyville, Thomas
Bremer, Peer-Timo
Gnanakaran, S.
Glosli, James N.
Lightstone, Felice C.
Nissley, Dwight V.
Streitz, Frederick H.
author_facet Ingólfsson, Helgi I.
Bhatia, Harsh
Aydin, Fikret
Oppelstrup, Tomas
López, Cesar A.
Stanton, Liam G.
Carpenter, Timothy S.
Wong, Sergio
Di Natale, Francesco
Zhang, Xiaohua
Moon, Joseph Y.
Stanley, Christopher B.
Chavez, Joseph R.
Nguyen, Kien
Dharuman, Gautham
Burns, Violetta
Shrestha, Rebika
Goswami, Debanjan
Gulten, Gulcin
Van, Que N.
Ramanathan, Arvind
Van Essen, Brian
Hengartner, Nicolas W.
Stephen, Andrew G.
Turbyville, Thomas
Bremer, Peer-Timo
Gnanakaran, S.
Glosli, James N.
Lightstone, Felice C.
Nissley, Dwight V.
Streitz, Frederick H.
author_sort Ingólfsson, Helgi I.
collection PubMed
description [Image: see text] Interdependence across time and length scales is common in biology, where atomic interactions can impact larger-scale phenomenon. Such dependence is especially true for a well-known cancer signaling pathway, where the membrane-bound RAS protein binds an effector protein called RAF. To capture the driving forces that bring RAS and RAF (represented as two domains, RBD and CRD) together on the plasma membrane, simulations with the ability to calculate atomic detail while having long time and large length- scales are needed. The Multiscale Machine-Learned Modeling Infrastructure (MuMMI) is able to resolve RAS/RAF protein–membrane interactions that identify specific lipid–protein fingerprints that enhance protein orientations viable for effector binding. MuMMI is a fully automated, ensemble-based multiscale approach connecting three resolution scales: (1) the coarsest scale is a continuum model able to simulate milliseconds of time for a 1 μm(2) membrane, (2) the middle scale is a coarse-grained (CG) Martini bead model to explore protein–lipid interactions, and (3) the finest scale is an all-atom (AA) model capturing specific interactions between lipids and proteins. MuMMI dynamically couples adjacent scales in a pairwise manner using machine learning (ML). The dynamic coupling allows for better sampling of the refined scale from the adjacent coarse scale (forward) and on-the-fly feedback to improve the fidelity of the coarser scale from the adjacent refined scale (backward). MuMMI operates efficiently at any scale, from a few compute nodes to the largest supercomputers in the world, and is generalizable to simulate different systems. As computing resources continue to increase and multiscale methods continue to advance, fully automated multiscale simulations (like MuMMI) will be commonly used to address complex science questions.
format Online
Article
Text
id pubmed-10173464
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-101734642023-05-12 Machine Learning-Driven Multiscale Modeling: Bridging the Scales with a Next-Generation Simulation Infrastructure Ingólfsson, Helgi I. Bhatia, Harsh Aydin, Fikret Oppelstrup, Tomas López, Cesar A. Stanton, Liam G. Carpenter, Timothy S. Wong, Sergio Di Natale, Francesco Zhang, Xiaohua Moon, Joseph Y. Stanley, Christopher B. Chavez, Joseph R. Nguyen, Kien Dharuman, Gautham Burns, Violetta Shrestha, Rebika Goswami, Debanjan Gulten, Gulcin Van, Que N. Ramanathan, Arvind Van Essen, Brian Hengartner, Nicolas W. Stephen, Andrew G. Turbyville, Thomas Bremer, Peer-Timo Gnanakaran, S. Glosli, James N. Lightstone, Felice C. Nissley, Dwight V. Streitz, Frederick H. J Chem Theory Comput [Image: see text] Interdependence across time and length scales is common in biology, where atomic interactions can impact larger-scale phenomenon. Such dependence is especially true for a well-known cancer signaling pathway, where the membrane-bound RAS protein binds an effector protein called RAF. To capture the driving forces that bring RAS and RAF (represented as two domains, RBD and CRD) together on the plasma membrane, simulations with the ability to calculate atomic detail while having long time and large length- scales are needed. The Multiscale Machine-Learned Modeling Infrastructure (MuMMI) is able to resolve RAS/RAF protein–membrane interactions that identify specific lipid–protein fingerprints that enhance protein orientations viable for effector binding. MuMMI is a fully automated, ensemble-based multiscale approach connecting three resolution scales: (1) the coarsest scale is a continuum model able to simulate milliseconds of time for a 1 μm(2) membrane, (2) the middle scale is a coarse-grained (CG) Martini bead model to explore protein–lipid interactions, and (3) the finest scale is an all-atom (AA) model capturing specific interactions between lipids and proteins. MuMMI dynamically couples adjacent scales in a pairwise manner using machine learning (ML). The dynamic coupling allows for better sampling of the refined scale from the adjacent coarse scale (forward) and on-the-fly feedback to improve the fidelity of the coarser scale from the adjacent refined scale (backward). MuMMI operates efficiently at any scale, from a few compute nodes to the largest supercomputers in the world, and is generalizable to simulate different systems. As computing resources continue to increase and multiscale methods continue to advance, fully automated multiscale simulations (like MuMMI) will be commonly used to address complex science questions. American Chemical Society 2023-04-19 /pmc/articles/PMC10173464/ /pubmed/37075065 http://dx.doi.org/10.1021/acs.jctc.2c01018 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Ingólfsson, Helgi I.
Bhatia, Harsh
Aydin, Fikret
Oppelstrup, Tomas
López, Cesar A.
Stanton, Liam G.
Carpenter, Timothy S.
Wong, Sergio
Di Natale, Francesco
Zhang, Xiaohua
Moon, Joseph Y.
Stanley, Christopher B.
Chavez, Joseph R.
Nguyen, Kien
Dharuman, Gautham
Burns, Violetta
Shrestha, Rebika
Goswami, Debanjan
Gulten, Gulcin
Van, Que N.
Ramanathan, Arvind
Van Essen, Brian
Hengartner, Nicolas W.
Stephen, Andrew G.
Turbyville, Thomas
Bremer, Peer-Timo
Gnanakaran, S.
Glosli, James N.
Lightstone, Felice C.
Nissley, Dwight V.
Streitz, Frederick H.
Machine Learning-Driven Multiscale Modeling: Bridging the Scales with a Next-Generation Simulation Infrastructure
title Machine Learning-Driven Multiscale Modeling: Bridging the Scales with a Next-Generation Simulation Infrastructure
title_full Machine Learning-Driven Multiscale Modeling: Bridging the Scales with a Next-Generation Simulation Infrastructure
title_fullStr Machine Learning-Driven Multiscale Modeling: Bridging the Scales with a Next-Generation Simulation Infrastructure
title_full_unstemmed Machine Learning-Driven Multiscale Modeling: Bridging the Scales with a Next-Generation Simulation Infrastructure
title_short Machine Learning-Driven Multiscale Modeling: Bridging the Scales with a Next-Generation Simulation Infrastructure
title_sort machine learning-driven multiscale modeling: bridging the scales with a next-generation simulation infrastructure
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10173464/
https://www.ncbi.nlm.nih.gov/pubmed/37075065
http://dx.doi.org/10.1021/acs.jctc.2c01018
work_keys_str_mv AT ingolfssonhelgii machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT bhatiaharsh machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT aydinfikret machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT oppelstruptomas machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT lopezcesara machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT stantonliamg machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT carpentertimothys machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT wongsergio machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT dinatalefrancesco machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT zhangxiaohua machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT moonjosephy machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT stanleychristopherb machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT chavezjosephr machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT nguyenkien machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT dharumangautham machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT burnsvioletta machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT shrestharebika machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT goswamidebanjan machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT gultengulcin machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT vanquen machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT ramanathanarvind machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT vanessenbrian machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT hengartnernicolasw machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT stephenandrewg machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT turbyvillethomas machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT bremerpeertimo machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT gnanakarans machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT gloslijamesn machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT lightstonefelicec machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT nissleydwightv machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure
AT streitzfrederickh machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure