Cargando…
Machine Learning-Driven Multiscale Modeling: Bridging the Scales with a Next-Generation Simulation Infrastructure
[Image: see text] Interdependence across time and length scales is common in biology, where atomic interactions can impact larger-scale phenomenon. Such dependence is especially true for a well-known cancer signaling pathway, where the membrane-bound RAS protein binds an effector protein called RAF....
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10173464/ https://www.ncbi.nlm.nih.gov/pubmed/37075065 http://dx.doi.org/10.1021/acs.jctc.2c01018 |
_version_ | 1785039823442018304 |
---|---|
author | Ingólfsson, Helgi I. Bhatia, Harsh Aydin, Fikret Oppelstrup, Tomas López, Cesar A. Stanton, Liam G. Carpenter, Timothy S. Wong, Sergio Di Natale, Francesco Zhang, Xiaohua Moon, Joseph Y. Stanley, Christopher B. Chavez, Joseph R. Nguyen, Kien Dharuman, Gautham Burns, Violetta Shrestha, Rebika Goswami, Debanjan Gulten, Gulcin Van, Que N. Ramanathan, Arvind Van Essen, Brian Hengartner, Nicolas W. Stephen, Andrew G. Turbyville, Thomas Bremer, Peer-Timo Gnanakaran, S. Glosli, James N. Lightstone, Felice C. Nissley, Dwight V. Streitz, Frederick H. |
author_facet | Ingólfsson, Helgi I. Bhatia, Harsh Aydin, Fikret Oppelstrup, Tomas López, Cesar A. Stanton, Liam G. Carpenter, Timothy S. Wong, Sergio Di Natale, Francesco Zhang, Xiaohua Moon, Joseph Y. Stanley, Christopher B. Chavez, Joseph R. Nguyen, Kien Dharuman, Gautham Burns, Violetta Shrestha, Rebika Goswami, Debanjan Gulten, Gulcin Van, Que N. Ramanathan, Arvind Van Essen, Brian Hengartner, Nicolas W. Stephen, Andrew G. Turbyville, Thomas Bremer, Peer-Timo Gnanakaran, S. Glosli, James N. Lightstone, Felice C. Nissley, Dwight V. Streitz, Frederick H. |
author_sort | Ingólfsson, Helgi I. |
collection | PubMed |
description | [Image: see text] Interdependence across time and length scales is common in biology, where atomic interactions can impact larger-scale phenomenon. Such dependence is especially true for a well-known cancer signaling pathway, where the membrane-bound RAS protein binds an effector protein called RAF. To capture the driving forces that bring RAS and RAF (represented as two domains, RBD and CRD) together on the plasma membrane, simulations with the ability to calculate atomic detail while having long time and large length- scales are needed. The Multiscale Machine-Learned Modeling Infrastructure (MuMMI) is able to resolve RAS/RAF protein–membrane interactions that identify specific lipid–protein fingerprints that enhance protein orientations viable for effector binding. MuMMI is a fully automated, ensemble-based multiscale approach connecting three resolution scales: (1) the coarsest scale is a continuum model able to simulate milliseconds of time for a 1 μm(2) membrane, (2) the middle scale is a coarse-grained (CG) Martini bead model to explore protein–lipid interactions, and (3) the finest scale is an all-atom (AA) model capturing specific interactions between lipids and proteins. MuMMI dynamically couples adjacent scales in a pairwise manner using machine learning (ML). The dynamic coupling allows for better sampling of the refined scale from the adjacent coarse scale (forward) and on-the-fly feedback to improve the fidelity of the coarser scale from the adjacent refined scale (backward). MuMMI operates efficiently at any scale, from a few compute nodes to the largest supercomputers in the world, and is generalizable to simulate different systems. As computing resources continue to increase and multiscale methods continue to advance, fully automated multiscale simulations (like MuMMI) will be commonly used to address complex science questions. |
format | Online Article Text |
id | pubmed-10173464 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-101734642023-05-12 Machine Learning-Driven Multiscale Modeling: Bridging the Scales with a Next-Generation Simulation Infrastructure Ingólfsson, Helgi I. Bhatia, Harsh Aydin, Fikret Oppelstrup, Tomas López, Cesar A. Stanton, Liam G. Carpenter, Timothy S. Wong, Sergio Di Natale, Francesco Zhang, Xiaohua Moon, Joseph Y. Stanley, Christopher B. Chavez, Joseph R. Nguyen, Kien Dharuman, Gautham Burns, Violetta Shrestha, Rebika Goswami, Debanjan Gulten, Gulcin Van, Que N. Ramanathan, Arvind Van Essen, Brian Hengartner, Nicolas W. Stephen, Andrew G. Turbyville, Thomas Bremer, Peer-Timo Gnanakaran, S. Glosli, James N. Lightstone, Felice C. Nissley, Dwight V. Streitz, Frederick H. J Chem Theory Comput [Image: see text] Interdependence across time and length scales is common in biology, where atomic interactions can impact larger-scale phenomenon. Such dependence is especially true for a well-known cancer signaling pathway, where the membrane-bound RAS protein binds an effector protein called RAF. To capture the driving forces that bring RAS and RAF (represented as two domains, RBD and CRD) together on the plasma membrane, simulations with the ability to calculate atomic detail while having long time and large length- scales are needed. The Multiscale Machine-Learned Modeling Infrastructure (MuMMI) is able to resolve RAS/RAF protein–membrane interactions that identify specific lipid–protein fingerprints that enhance protein orientations viable for effector binding. MuMMI is a fully automated, ensemble-based multiscale approach connecting three resolution scales: (1) the coarsest scale is a continuum model able to simulate milliseconds of time for a 1 μm(2) membrane, (2) the middle scale is a coarse-grained (CG) Martini bead model to explore protein–lipid interactions, and (3) the finest scale is an all-atom (AA) model capturing specific interactions between lipids and proteins. MuMMI dynamically couples adjacent scales in a pairwise manner using machine learning (ML). The dynamic coupling allows for better sampling of the refined scale from the adjacent coarse scale (forward) and on-the-fly feedback to improve the fidelity of the coarser scale from the adjacent refined scale (backward). MuMMI operates efficiently at any scale, from a few compute nodes to the largest supercomputers in the world, and is generalizable to simulate different systems. As computing resources continue to increase and multiscale methods continue to advance, fully automated multiscale simulations (like MuMMI) will be commonly used to address complex science questions. American Chemical Society 2023-04-19 /pmc/articles/PMC10173464/ /pubmed/37075065 http://dx.doi.org/10.1021/acs.jctc.2c01018 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Ingólfsson, Helgi I. Bhatia, Harsh Aydin, Fikret Oppelstrup, Tomas López, Cesar A. Stanton, Liam G. Carpenter, Timothy S. Wong, Sergio Di Natale, Francesco Zhang, Xiaohua Moon, Joseph Y. Stanley, Christopher B. Chavez, Joseph R. Nguyen, Kien Dharuman, Gautham Burns, Violetta Shrestha, Rebika Goswami, Debanjan Gulten, Gulcin Van, Que N. Ramanathan, Arvind Van Essen, Brian Hengartner, Nicolas W. Stephen, Andrew G. Turbyville, Thomas Bremer, Peer-Timo Gnanakaran, S. Glosli, James N. Lightstone, Felice C. Nissley, Dwight V. Streitz, Frederick H. Machine Learning-Driven Multiscale Modeling: Bridging the Scales with a Next-Generation Simulation Infrastructure |
title | Machine Learning-Driven
Multiscale Modeling: Bridging
the Scales with a Next-Generation Simulation Infrastructure |
title_full | Machine Learning-Driven
Multiscale Modeling: Bridging
the Scales with a Next-Generation Simulation Infrastructure |
title_fullStr | Machine Learning-Driven
Multiscale Modeling: Bridging
the Scales with a Next-Generation Simulation Infrastructure |
title_full_unstemmed | Machine Learning-Driven
Multiscale Modeling: Bridging
the Scales with a Next-Generation Simulation Infrastructure |
title_short | Machine Learning-Driven
Multiscale Modeling: Bridging
the Scales with a Next-Generation Simulation Infrastructure |
title_sort | machine learning-driven
multiscale modeling: bridging
the scales with a next-generation simulation infrastructure |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10173464/ https://www.ncbi.nlm.nih.gov/pubmed/37075065 http://dx.doi.org/10.1021/acs.jctc.2c01018 |
work_keys_str_mv | AT ingolfssonhelgii machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT bhatiaharsh machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT aydinfikret machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT oppelstruptomas machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT lopezcesara machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT stantonliamg machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT carpentertimothys machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT wongsergio machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT dinatalefrancesco machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT zhangxiaohua machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT moonjosephy machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT stanleychristopherb machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT chavezjosephr machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT nguyenkien machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT dharumangautham machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT burnsvioletta machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT shrestharebika machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT goswamidebanjan machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT gultengulcin machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT vanquen machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT ramanathanarvind machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT vanessenbrian machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT hengartnernicolasw machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT stephenandrewg machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT turbyvillethomas machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT bremerpeertimo machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT gnanakarans machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT gloslijamesn machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT lightstonefelicec machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT nissleydwightv machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure AT streitzfrederickh machinelearningdrivenmultiscalemodelingbridgingthescaleswithanextgenerationsimulationinfrastructure |