Cargando…

A Handheld Quantifiable Soft Tissue Manipulation Device for Tracking Real-Time Dispersive Force-Motion Patterns to Characterize Manual Therapy Treatment

OBJECTIVE: Low back pain (LBP) is one of the leading neuromusculoskeletal (NMSK) problems around the globe. Soft Tissue Manipulation (STM) is a force-based, non-invasive intervention used to clinically address NMSK pain conditions. Current STM practice standards are mostly subjective, suggesting an...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhattacharjee, Abhinaba, Anwar, Sohel, Chien, Stanley, Loghmani, M. Terry
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10173803/
https://www.ncbi.nlm.nih.gov/pubmed/36378798
http://dx.doi.org/10.1109/TBME.2022.3222124
_version_ 1785039902337925120
author Bhattacharjee, Abhinaba
Anwar, Sohel
Chien, Stanley
Loghmani, M. Terry
author_facet Bhattacharjee, Abhinaba
Anwar, Sohel
Chien, Stanley
Loghmani, M. Terry
author_sort Bhattacharjee, Abhinaba
collection PubMed
description OBJECTIVE: Low back pain (LBP) is one of the leading neuromusculoskeletal (NMSK) problems around the globe. Soft Tissue Manipulation (STM) is a force-based, non-invasive intervention used to clinically address NMSK pain conditions. Current STM practice standards are mostly subjective, suggesting an urgent need for quantitative metrics. This research aims at developing a handheld, portable smart medical device for tracking real-time dispersive force-motions to characterize manual therapy treatments as Quantifiable Soft Tissue Manipulation (QSTM). METHODS: The device includes two 3D load-cells to quantify compressive and planar-shear forces, coupled with a 6 degrees-of-freedom IMU sensor for acquiring volitionally adapted therapeutic motions while scanning and mobilizing myofascial restrictions over larger areas of the body. These force-motions characterize QSTM with treatment parameters (targeted force, application angle, rate, direction, motion pattern, time) as a part of post-processing on a PC software (Q-Ware©). A human case study was conducted to treat LBP as proof-of-concept for the device’s clinical usability. RESULTS: External validation of treatment parameters reported adequate device precision required for clinical use. The case study findings revealed identifiable therapeutic force-motion patterns within treatments indicating subject’s elevated force-endurance with self-reported pain reduction. CONCLUSION: QSTM metrics may enable study of STM dosing for optimized pain reduction and functional outcomes using documentable manual therapy. Clinical trials will further determine its reliability and comparison to conventional STM. SIGNIFICANCE: This medical device technology not only advances the state-of-the-art manual therapy with precision rehabilitation but also augments practice with reproducibility to examine neurobiological responses of individualized STM prescriptions for NMSK pathology.
format Online
Article
Text
id pubmed-10173803
institution National Center for Biotechnology Information
language English
publishDate 2023
record_format MEDLINE/PubMed
spelling pubmed-101738032023-05-11 A Handheld Quantifiable Soft Tissue Manipulation Device for Tracking Real-Time Dispersive Force-Motion Patterns to Characterize Manual Therapy Treatment Bhattacharjee, Abhinaba Anwar, Sohel Chien, Stanley Loghmani, M. Terry IEEE Trans Biomed Eng Article OBJECTIVE: Low back pain (LBP) is one of the leading neuromusculoskeletal (NMSK) problems around the globe. Soft Tissue Manipulation (STM) is a force-based, non-invasive intervention used to clinically address NMSK pain conditions. Current STM practice standards are mostly subjective, suggesting an urgent need for quantitative metrics. This research aims at developing a handheld, portable smart medical device for tracking real-time dispersive force-motions to characterize manual therapy treatments as Quantifiable Soft Tissue Manipulation (QSTM). METHODS: The device includes two 3D load-cells to quantify compressive and planar-shear forces, coupled with a 6 degrees-of-freedom IMU sensor for acquiring volitionally adapted therapeutic motions while scanning and mobilizing myofascial restrictions over larger areas of the body. These force-motions characterize QSTM with treatment parameters (targeted force, application angle, rate, direction, motion pattern, time) as a part of post-processing on a PC software (Q-Ware©). A human case study was conducted to treat LBP as proof-of-concept for the device’s clinical usability. RESULTS: External validation of treatment parameters reported adequate device precision required for clinical use. The case study findings revealed identifiable therapeutic force-motion patterns within treatments indicating subject’s elevated force-endurance with self-reported pain reduction. CONCLUSION: QSTM metrics may enable study of STM dosing for optimized pain reduction and functional outcomes using documentable manual therapy. Clinical trials will further determine its reliability and comparison to conventional STM. SIGNIFICANCE: This medical device technology not only advances the state-of-the-art manual therapy with precision rehabilitation but also augments practice with reproducibility to examine neurobiological responses of individualized STM prescriptions for NMSK pathology. 2023-05 2023-04-20 /pmc/articles/PMC10173803/ /pubmed/36378798 http://dx.doi.org/10.1109/TBME.2022.3222124 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 License.For more information, see https://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Bhattacharjee, Abhinaba
Anwar, Sohel
Chien, Stanley
Loghmani, M. Terry
A Handheld Quantifiable Soft Tissue Manipulation Device for Tracking Real-Time Dispersive Force-Motion Patterns to Characterize Manual Therapy Treatment
title A Handheld Quantifiable Soft Tissue Manipulation Device for Tracking Real-Time Dispersive Force-Motion Patterns to Characterize Manual Therapy Treatment
title_full A Handheld Quantifiable Soft Tissue Manipulation Device for Tracking Real-Time Dispersive Force-Motion Patterns to Characterize Manual Therapy Treatment
title_fullStr A Handheld Quantifiable Soft Tissue Manipulation Device for Tracking Real-Time Dispersive Force-Motion Patterns to Characterize Manual Therapy Treatment
title_full_unstemmed A Handheld Quantifiable Soft Tissue Manipulation Device for Tracking Real-Time Dispersive Force-Motion Patterns to Characterize Manual Therapy Treatment
title_short A Handheld Quantifiable Soft Tissue Manipulation Device for Tracking Real-Time Dispersive Force-Motion Patterns to Characterize Manual Therapy Treatment
title_sort handheld quantifiable soft tissue manipulation device for tracking real-time dispersive force-motion patterns to characterize manual therapy treatment
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10173803/
https://www.ncbi.nlm.nih.gov/pubmed/36378798
http://dx.doi.org/10.1109/TBME.2022.3222124
work_keys_str_mv AT bhattacharjeeabhinaba ahandheldquantifiablesofttissuemanipulationdevicefortrackingrealtimedispersiveforcemotionpatternstocharacterizemanualtherapytreatment
AT anwarsohel ahandheldquantifiablesofttissuemanipulationdevicefortrackingrealtimedispersiveforcemotionpatternstocharacterizemanualtherapytreatment
AT chienstanley ahandheldquantifiablesofttissuemanipulationdevicefortrackingrealtimedispersiveforcemotionpatternstocharacterizemanualtherapytreatment
AT loghmanimterry ahandheldquantifiablesofttissuemanipulationdevicefortrackingrealtimedispersiveforcemotionpatternstocharacterizemanualtherapytreatment
AT bhattacharjeeabhinaba handheldquantifiablesofttissuemanipulationdevicefortrackingrealtimedispersiveforcemotionpatternstocharacterizemanualtherapytreatment
AT anwarsohel handheldquantifiablesofttissuemanipulationdevicefortrackingrealtimedispersiveforcemotionpatternstocharacterizemanualtherapytreatment
AT chienstanley handheldquantifiablesofttissuemanipulationdevicefortrackingrealtimedispersiveforcemotionpatternstocharacterizemanualtherapytreatment
AT loghmanimterry handheldquantifiablesofttissuemanipulationdevicefortrackingrealtimedispersiveforcemotionpatternstocharacterizemanualtherapytreatment