Cargando…
Application of Convolutional Neural Networks for COVID-19 Detection in X-ray Images Using InceptionV3 and U-Net
COVID-19 has expanded overall across the globe after its initial cases were discovered in December 2019 in Wuhan—China. Because the virus has impacted people's health worldwide, its fast identification is essential for preventing disease spread and reducing mortality rates. The reverse transcri...
Autores principales: | Gupta, Aman, Mishra, Shashank, Sahu, Sourav Chandan, Srinivasarao, Ulligaddala, Naik, K. Jairam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Japan
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10173914/ https://www.ncbi.nlm.nih.gov/pubmed/37229179 http://dx.doi.org/10.1007/s00354-023-00217-2 |
Ejemplares similares
-
Pneumonia Classification from X-ray Images with Inception-V3 and Convolutional Neural Network
por: Mujahid, Muhammad, et al.
Publicado: (2022) -
SMS sentiment classification using an evolutionary optimization based fuzzy recurrent neural network
por: Srinivasarao, Ulligaddala, et al.
Publicado: (2023) -
Truncated inception net: COVID-19 outbreak screening using chest X-rays
por: Das, Dipayan, et al.
Publicado: (2020) -
AngioNet: a convolutional neural network for vessel segmentation in X-ray angiography
por: Iyer, Kritika, et al.
Publicado: (2021) -
Inception Convolution and Feature Fusion for Person Search
por: Ouyang, Huan, et al.
Publicado: (2023)