Cargando…
Data-Centric AI for Healthcare Fraud Detection
Automated methods for detecting fraudulent healthcare providers have the potential to save billions of dollars in healthcare costs and improve the overall quality of patient care. This study presents a data-centric approach to improve healthcare fraud classification performance and reliability using...
Autores principales: | Johnson, Justin M., Khoshgoftaar, Taghi M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10173919/ https://www.ncbi.nlm.nih.gov/pubmed/37200563 http://dx.doi.org/10.1007/s42979-023-01809-x |
Ejemplares similares
-
Fraud and fraud detection: a data analytics approach
por: Gee, Sunder
Publicado: (2015) -
Healthcare Fraud: Auditing and Detection Guide
por: Busch, Rebecca
Publicado: (2012) -
AI-enabled image fraud in scientific publications
por: Gu, Jinjin, et al.
Publicado: (2022) -
CatBoost for big data: an interdisciplinary review
por: Hancock, John T., et al.
Publicado: (2020) -
Text Data Augmentation for Deep Learning
por: Shorten, Connor, et al.
Publicado: (2021)