Cargando…

The molybdate-binding protein ModA is required for Proteus mirabilis-induced UTI

BACKGROUND: Proteus mirabilis is one of the pathogens commonly causing urinary tract infections (UTIs). The molybdate-binding protein ModA encoded by modA binds molybdate with high affinity and transports it. Increasing evidence shows that ModA promotes the survival of bacteria in anaerobic environm...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Yi, Chen, Jinbin, Jiang, Qiao, Huang, Nan, Ding, Xin, Peng, Liang, Deng, Xiaoyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10174112/
https://www.ncbi.nlm.nih.gov/pubmed/37180242
http://dx.doi.org/10.3389/fmicb.2023.1156273
_version_ 1785039965484220416
author Huang, Yi
Chen, Jinbin
Jiang, Qiao
Huang, Nan
Ding, Xin
Peng, Liang
Deng, Xiaoyan
author_facet Huang, Yi
Chen, Jinbin
Jiang, Qiao
Huang, Nan
Ding, Xin
Peng, Liang
Deng, Xiaoyan
author_sort Huang, Yi
collection PubMed
description BACKGROUND: Proteus mirabilis is one of the pathogens commonly causing urinary tract infections (UTIs). The molybdate-binding protein ModA encoded by modA binds molybdate with high affinity and transports it. Increasing evidence shows that ModA promotes the survival of bacteria in anaerobic environments and participates in bacterial virulence by obtaining molybdenum. However, the role of ModA in the pathogenesis of P. mirabilis remains unknown. RESULTS: In this study, a series of phenotypic assays and transcriptomic analyses were used to study the role of ModA in the UTIs induced by P. mirabilis. Our data showed that ModA absorbed molybdate with high affinity and incorporated it into molybdopterin, thus affecting the anaerobic growth of P. mirabilis. Loss of ModA enhanced bacterial swarming and swimming and up-regulated the expression of multiple genes in flagellar assembly pathway. The loss of ModA also resulted in decreased biofilm formation under anaerobic growth conditions. The modA mutant significantly inhibited bacterial adhesion and invasion to urinary tract epithelial cells and down-regulated the expression of multiple genes associated with pilus assembly. Those alterations were not due to anaerobic growth defects. In addition, the decreased bacteria in the bladder tissue, the weakened inflammatory damage, the low level of IL-6, and minor weight change was observed in the UTI mouse model infected with modA mutant. CONCLUSION: Here, we reported that in P. mirabilis, ModA mediated the transport of molybdate, thereby affecting the activity of nitrate reductase and thus affecting the growth of bacteria under anaerobic conditions. Overall, this study clarified the indirect role of ModA in the anaerobic growth, motility, biofilm formation, and pathogenicity of P. mirabilis and its possible pathway, and emphasized the importance of the molybdate-binding protein ModA to P. mirabilis in mediating molybdate uptake, allowing the bacterium to adapt to complex environmental conditions and cause UTIs. Our results provided valuable information on the pathogenesis of ModA-induced P. mirabilis UTIs and may facilitate the development of new treatment strategies.
format Online
Article
Text
id pubmed-10174112
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-101741122023-05-12 The molybdate-binding protein ModA is required for Proteus mirabilis-induced UTI Huang, Yi Chen, Jinbin Jiang, Qiao Huang, Nan Ding, Xin Peng, Liang Deng, Xiaoyan Front Microbiol Microbiology BACKGROUND: Proteus mirabilis is one of the pathogens commonly causing urinary tract infections (UTIs). The molybdate-binding protein ModA encoded by modA binds molybdate with high affinity and transports it. Increasing evidence shows that ModA promotes the survival of bacteria in anaerobic environments and participates in bacterial virulence by obtaining molybdenum. However, the role of ModA in the pathogenesis of P. mirabilis remains unknown. RESULTS: In this study, a series of phenotypic assays and transcriptomic analyses were used to study the role of ModA in the UTIs induced by P. mirabilis. Our data showed that ModA absorbed molybdate with high affinity and incorporated it into molybdopterin, thus affecting the anaerobic growth of P. mirabilis. Loss of ModA enhanced bacterial swarming and swimming and up-regulated the expression of multiple genes in flagellar assembly pathway. The loss of ModA also resulted in decreased biofilm formation under anaerobic growth conditions. The modA mutant significantly inhibited bacterial adhesion and invasion to urinary tract epithelial cells and down-regulated the expression of multiple genes associated with pilus assembly. Those alterations were not due to anaerobic growth defects. In addition, the decreased bacteria in the bladder tissue, the weakened inflammatory damage, the low level of IL-6, and minor weight change was observed in the UTI mouse model infected with modA mutant. CONCLUSION: Here, we reported that in P. mirabilis, ModA mediated the transport of molybdate, thereby affecting the activity of nitrate reductase and thus affecting the growth of bacteria under anaerobic conditions. Overall, this study clarified the indirect role of ModA in the anaerobic growth, motility, biofilm formation, and pathogenicity of P. mirabilis and its possible pathway, and emphasized the importance of the molybdate-binding protein ModA to P. mirabilis in mediating molybdate uptake, allowing the bacterium to adapt to complex environmental conditions and cause UTIs. Our results provided valuable information on the pathogenesis of ModA-induced P. mirabilis UTIs and may facilitate the development of new treatment strategies. Frontiers Media S.A. 2023-04-27 /pmc/articles/PMC10174112/ /pubmed/37180242 http://dx.doi.org/10.3389/fmicb.2023.1156273 Text en Copyright © 2023 Huang, Chen, Jiang, Huang, Ding, Peng and Deng. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Huang, Yi
Chen, Jinbin
Jiang, Qiao
Huang, Nan
Ding, Xin
Peng, Liang
Deng, Xiaoyan
The molybdate-binding protein ModA is required for Proteus mirabilis-induced UTI
title The molybdate-binding protein ModA is required for Proteus mirabilis-induced UTI
title_full The molybdate-binding protein ModA is required for Proteus mirabilis-induced UTI
title_fullStr The molybdate-binding protein ModA is required for Proteus mirabilis-induced UTI
title_full_unstemmed The molybdate-binding protein ModA is required for Proteus mirabilis-induced UTI
title_short The molybdate-binding protein ModA is required for Proteus mirabilis-induced UTI
title_sort molybdate-binding protein moda is required for proteus mirabilis-induced uti
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10174112/
https://www.ncbi.nlm.nih.gov/pubmed/37180242
http://dx.doi.org/10.3389/fmicb.2023.1156273
work_keys_str_mv AT huangyi themolybdatebindingproteinmodaisrequiredforproteusmirabilisinduceduti
AT chenjinbin themolybdatebindingproteinmodaisrequiredforproteusmirabilisinduceduti
AT jiangqiao themolybdatebindingproteinmodaisrequiredforproteusmirabilisinduceduti
AT huangnan themolybdatebindingproteinmodaisrequiredforproteusmirabilisinduceduti
AT dingxin themolybdatebindingproteinmodaisrequiredforproteusmirabilisinduceduti
AT pengliang themolybdatebindingproteinmodaisrequiredforproteusmirabilisinduceduti
AT dengxiaoyan themolybdatebindingproteinmodaisrequiredforproteusmirabilisinduceduti
AT huangyi molybdatebindingproteinmodaisrequiredforproteusmirabilisinduceduti
AT chenjinbin molybdatebindingproteinmodaisrequiredforproteusmirabilisinduceduti
AT jiangqiao molybdatebindingproteinmodaisrequiredforproteusmirabilisinduceduti
AT huangnan molybdatebindingproteinmodaisrequiredforproteusmirabilisinduceduti
AT dingxin molybdatebindingproteinmodaisrequiredforproteusmirabilisinduceduti
AT pengliang molybdatebindingproteinmodaisrequiredforproteusmirabilisinduceduti
AT dengxiaoyan molybdatebindingproteinmodaisrequiredforproteusmirabilisinduceduti