Cargando…
Review of Filters for Air Sampling and Chemical Analysis in Mining Workplaces
This review considers the use of filters to sample air in mining workplace environments for dust concentration measurement and subsequent analysis of hazardous contaminants, especially respirable crystalline silica (RCS) on filters compatible with wearable personal dust monitors (PDM). The review su...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10174218/ https://www.ncbi.nlm.nih.gov/pubmed/37180428 http://dx.doi.org/10.3390/min12101314 |
_version_ | 1785039983970615296 |
---|---|
author | Chow, Judith C. Watson, John G. Wang, Xiaoliang Abbasi, Behrooz Reed, Wm. Randolph Parks, David |
author_facet | Chow, Judith C. Watson, John G. Wang, Xiaoliang Abbasi, Behrooz Reed, Wm. Randolph Parks, David |
author_sort | Chow, Judith C. |
collection | PubMed |
description | This review considers the use of filters to sample air in mining workplace environments for dust concentration measurement and subsequent analysis of hazardous contaminants, especially respirable crystalline silica (RCS) on filters compatible with wearable personal dust monitors (PDM). The review summarizes filter vendors, sizes, costs, chemical and physical properties, and information available on filter modeling, laboratory testing, and field performance. Filter media testing and selection should consider the characteristics required for mass by gravimetry in addition to RCS quantification by Fourier-transform infrared (FTIR) or Raman spectroscopic analysis. For mass determination, the filters need to have high filtration efficiency (≥99% for the most penetrable particle sizes) and a reasonable pressure drop (up to 16.7 kPa) to accommodate high dust loading. Additional requirements include: negligible uptake of water vapor and gaseous volatile compounds; adequate particle adhesion as a function of particle loading; sufficient particle loading capacity to form a stable particle deposit layer during sampling in wet and dusty environments; mechanical strength to withstand vibrations and pressure drops across the filter; and appropriate filter mass compatible with the tapered element oscillating microbalance. FTIR and Raman measurements require filters to be free of spectral interference. Furthermore, because the irradiated area does not completely cover the sample deposit, particles should be uniformly deposited on the filter. |
format | Online Article Text |
id | pubmed-10174218 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
record_format | MEDLINE/PubMed |
spelling | pubmed-101742182023-05-11 Review of Filters for Air Sampling and Chemical Analysis in Mining Workplaces Chow, Judith C. Watson, John G. Wang, Xiaoliang Abbasi, Behrooz Reed, Wm. Randolph Parks, David Minerals (Basel) Article This review considers the use of filters to sample air in mining workplace environments for dust concentration measurement and subsequent analysis of hazardous contaminants, especially respirable crystalline silica (RCS) on filters compatible with wearable personal dust monitors (PDM). The review summarizes filter vendors, sizes, costs, chemical and physical properties, and information available on filter modeling, laboratory testing, and field performance. Filter media testing and selection should consider the characteristics required for mass by gravimetry in addition to RCS quantification by Fourier-transform infrared (FTIR) or Raman spectroscopic analysis. For mass determination, the filters need to have high filtration efficiency (≥99% for the most penetrable particle sizes) and a reasonable pressure drop (up to 16.7 kPa) to accommodate high dust loading. Additional requirements include: negligible uptake of water vapor and gaseous volatile compounds; adequate particle adhesion as a function of particle loading; sufficient particle loading capacity to form a stable particle deposit layer during sampling in wet and dusty environments; mechanical strength to withstand vibrations and pressure drops across the filter; and appropriate filter mass compatible with the tapered element oscillating microbalance. FTIR and Raman measurements require filters to be free of spectral interference. Furthermore, because the irradiated area does not completely cover the sample deposit, particles should be uniformly deposited on the filter. 2022-10-18 /pmc/articles/PMC10174218/ /pubmed/37180428 http://dx.doi.org/10.3390/min12101314 Text en https://creativecommons.org/licenses/by/4.0/This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chow, Judith C. Watson, John G. Wang, Xiaoliang Abbasi, Behrooz Reed, Wm. Randolph Parks, David Review of Filters for Air Sampling and Chemical Analysis in Mining Workplaces |
title | Review of Filters for Air Sampling and Chemical Analysis in Mining Workplaces |
title_full | Review of Filters for Air Sampling and Chemical Analysis in Mining Workplaces |
title_fullStr | Review of Filters for Air Sampling and Chemical Analysis in Mining Workplaces |
title_full_unstemmed | Review of Filters for Air Sampling and Chemical Analysis in Mining Workplaces |
title_short | Review of Filters for Air Sampling and Chemical Analysis in Mining Workplaces |
title_sort | review of filters for air sampling and chemical analysis in mining workplaces |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10174218/ https://www.ncbi.nlm.nih.gov/pubmed/37180428 http://dx.doi.org/10.3390/min12101314 |
work_keys_str_mv | AT chowjudithc reviewoffiltersforairsamplingandchemicalanalysisinminingworkplaces AT watsonjohng reviewoffiltersforairsamplingandchemicalanalysisinminingworkplaces AT wangxiaoliang reviewoffiltersforairsamplingandchemicalanalysisinminingworkplaces AT abbasibehrooz reviewoffiltersforairsamplingandchemicalanalysisinminingworkplaces AT reedwmrandolph reviewoffiltersforairsamplingandchemicalanalysisinminingworkplaces AT parksdavid reviewoffiltersforairsamplingandchemicalanalysisinminingworkplaces |