Cargando…
A senescence-related signature for predicting the prognosis of breast cancer: A bioinformatics analysis
Breast cancer is a heterogeneous disease with diverse prognosis and treatment outcomes. Current gene signatures for prognostic prediction are limited to specific subtypes of breast cancer. Cellular senescence is a state of irreversible cell cycle arrest that affects various physiological and patholo...
Autores principales: | Xing, Tengfei, Hu, Yiyi, Wang, Hongying, Zou, Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10174404/ https://www.ncbi.nlm.nih.gov/pubmed/37171330 http://dx.doi.org/10.1097/MD.0000000000033739 |
Ejemplares similares
-
Identification of an optimized glycolytic-related risk signature for predicting the prognosis in breast cancer using integrated bioinformatic analysis
por: Jiang, Di, et al.
Publicado: (2023) -
Establishment of a 6-signature risk model associated with cellular senescence for predicting the prognosis of breast cancer
por: Zhang, Xiu-Xia, et al.
Publicado: (2023) -
Construction and validation of a transient receptor potential-related long noncoding RNA signature for prognosis prediction in breast cancer patients
por: Guo, Qiaonan, et al.
Publicado: (2023) -
Potential value of MicroRNA-21 as a biomarker for predicting the prognosis of patients with breast cancer: A protocol for meta-analysis and bioinformatics analysis
por: Ding, Yunfeng, et al.
Publicado: (2021) -
Identification of candidate biomarkers correlated with the pathogenesis and prognosis of breast cancer via integrated bioinformatics analysis
por: Liu, Shuyu, et al.
Publicado: (2020)