Cargando…
Predicting preterm births from electrohysterogram recordings via deep learning
About one in ten babies is born preterm, i.e., before completing 37 weeks of gestation, which can result in permanent neurologic deficit and is a leading cause of child mortality. Although imminent preterm labor can be detected, predicting preterm births more than one week in advance remains elusive...
Autores principales: | Goldsztejn, Uri, Nehorai, Arye |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10174487/ https://www.ncbi.nlm.nih.gov/pubmed/37167222 http://dx.doi.org/10.1371/journal.pone.0285219 |
Ejemplares similares
-
A myofibre model for the study of uterine excitation-contraction dynamics
por: Goldsztejn, Uri, et al.
Publicado: (2020) -
Public policy and economic dynamics of COVID-19 spread: A mathematical modeling study
por: Goldsztejn, Uri, et al.
Publicado: (2020) -
Detection of preterm birth in electrohysterogram signals based on wavelet transform and stacked sparse autoencoder
por: Chen, Lili, et al.
Publicado: (2019) -
Prediction of Preterm Labor from the Electrohysterogram Signals Based on Different Gestational Weeks
por: Mohammadi Far, Somayeh, et al.
Publicado: (2023) -
Development of Electrohysterogram Recording System for Monitoring Uterine Contraction
por: Hao, Dongmei, et al.
Publicado: (2019)