Cargando…
EEG signature of breaks in embodiment in VR
The brain mechanism of embodiment in a virtual body has grown a scientific interest recently, with a particular focus on providing optimal virtual reality (VR) experiences. Disruptions from an embodied state to a less- or non-embodied state, denominated Breaks in Embodiment (BiE), are however rarely...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10174550/ https://www.ncbi.nlm.nih.gov/pubmed/37167243 http://dx.doi.org/10.1371/journal.pone.0282967 |
Sumario: | The brain mechanism of embodiment in a virtual body has grown a scientific interest recently, with a particular focus on providing optimal virtual reality (VR) experiences. Disruptions from an embodied state to a less- or non-embodied state, denominated Breaks in Embodiment (BiE), are however rarely studied despite their importance for designing interactions in VR. Here we use electroencephalography (EEG) to monitor the brain’s reaction to a BiE, and investigate how this reaction depends on previous embodiment conditions. The experimental protocol consisted of two sequential steps; an induction step where participants were either embodied or non-embodied in an avatar, and a monitoring step where, in some cases, participants saw the avatar’s hand move while their hand remained still. Our results show the occurrence of error-related potentials linked to observation of the BiE event in the monitoring step. Importantly, this EEG signature shows amplified potentials following the non-embodied condition, which is indicative of an accumulation of errors across steps. These results provide neurophysiological indications on how progressive disruptions impact the expectation of embodiment for a virtual body. |
---|