Cargando…

Efficient keystone species identification strategy based on tabu search

As species extinction accelerates globally and biodiversity declines dramatically, identifying keystone species becomes an effective way to conserve biodiversity. In traditional approaches, it is considered that the extinction of species with high centrality poses the greatest threat to secondary ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Chuanjin, Zhu, Donghui, Zhang, Tongtong, Wu, Ruijia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10174581/
https://www.ncbi.nlm.nih.gov/pubmed/37167265
http://dx.doi.org/10.1371/journal.pone.0285575
Descripción
Sumario:As species extinction accelerates globally and biodiversity declines dramatically, identifying keystone species becomes an effective way to conserve biodiversity. In traditional approaches, it is considered that the extinction of species with high centrality poses the greatest threat to secondary extinction. However, the indirect effect, which is equally important as the local and direct effects, is not included. Here, we propose an optimized disintegration strategy model for quantitative food webs and introduced tabu search, a metaheuristic optimization algorithm, to identify keystone species. Topological simulations are used to record secondary extinctions during species removal and secondary extinction areas, as well as to evaluate food web robustness. The effectiveness of the proposed strategy is also validated by comparing it with traditional methods. Results of our experiments demonstrate that our strategy can optimize the effect of food web disintegration and identify the species whose extinction is most destructive to the food web through global search. The algorithm provides an innovative and efficient way for further development of keystone species identification in the ecosystem.