Cargando…

Neither random nor censored: estimating intensity-dependent probabilities for missing values in label-free proteomics

MOTIVATION: Mass spectrometry proteomics is a powerful tool in biomedical research but its usefulness is limited by the frequent occurrence of missing values in peptides that cannot be reliably quantified (detected) for particular samples. Many analysis strategies have been proposed for missing valu...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Mengbo, Smyth, Gordon K
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10174703/
https://www.ncbi.nlm.nih.gov/pubmed/37067487
http://dx.doi.org/10.1093/bioinformatics/btad200
_version_ 1785040091558707200
author Li, Mengbo
Smyth, Gordon K
author_facet Li, Mengbo
Smyth, Gordon K
author_sort Li, Mengbo
collection PubMed
description MOTIVATION: Mass spectrometry proteomics is a powerful tool in biomedical research but its usefulness is limited by the frequent occurrence of missing values in peptides that cannot be reliably quantified (detected) for particular samples. Many analysis strategies have been proposed for missing values where the discussion often focuses on distinguishing whether values are missing completely at random (MCAR), missing at random (MAR) or missing not at random (MNAR). RESULTS: Statistical models and algorithms are proposed for estimating the detection probabilities and for evaluating how much statistical information can or cannot be recovered from the missing value pattern. The probability that an intensity is detected is shown to be accurately modeled as a logit-linear function of the underlying intensity, showing that missing value process is intermediate between MAR and censoring. The detection probability asymptotes to 100% for high intensities, showing that missing values unrelated to intensity are rare. The rule applies globally to each dataset and is appropriate for both high and lowly expressed peptides. A probability model is developed that allows the distribution of unobserved intensities to be inferred from the observed values. The detection probability model is incorporated into a likelihood-based approach for assessing differential expression and successfully recovers statistical power compared to omitting the missing values from the analysis. In contrast, imputation methods are shown to perform poorly, either reducing statistical power or increasing the false discovery rate to unacceptable levels. AVAILABILITY AND IMPLEMENTATION: Data and code to reproduce the results shown in this article are available from https://mengbo-li.github.io/protDP/.
format Online
Article
Text
id pubmed-10174703
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-101747032023-05-12 Neither random nor censored: estimating intensity-dependent probabilities for missing values in label-free proteomics Li, Mengbo Smyth, Gordon K Bioinformatics Original Paper MOTIVATION: Mass spectrometry proteomics is a powerful tool in biomedical research but its usefulness is limited by the frequent occurrence of missing values in peptides that cannot be reliably quantified (detected) for particular samples. Many analysis strategies have been proposed for missing values where the discussion often focuses on distinguishing whether values are missing completely at random (MCAR), missing at random (MAR) or missing not at random (MNAR). RESULTS: Statistical models and algorithms are proposed for estimating the detection probabilities and for evaluating how much statistical information can or cannot be recovered from the missing value pattern. The probability that an intensity is detected is shown to be accurately modeled as a logit-linear function of the underlying intensity, showing that missing value process is intermediate between MAR and censoring. The detection probability asymptotes to 100% for high intensities, showing that missing values unrelated to intensity are rare. The rule applies globally to each dataset and is appropriate for both high and lowly expressed peptides. A probability model is developed that allows the distribution of unobserved intensities to be inferred from the observed values. The detection probability model is incorporated into a likelihood-based approach for assessing differential expression and successfully recovers statistical power compared to omitting the missing values from the analysis. In contrast, imputation methods are shown to perform poorly, either reducing statistical power or increasing the false discovery rate to unacceptable levels. AVAILABILITY AND IMPLEMENTATION: Data and code to reproduce the results shown in this article are available from https://mengbo-li.github.io/protDP/. Oxford University Press 2023-04-17 /pmc/articles/PMC10174703/ /pubmed/37067487 http://dx.doi.org/10.1093/bioinformatics/btad200 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Paper
Li, Mengbo
Smyth, Gordon K
Neither random nor censored: estimating intensity-dependent probabilities for missing values in label-free proteomics
title Neither random nor censored: estimating intensity-dependent probabilities for missing values in label-free proteomics
title_full Neither random nor censored: estimating intensity-dependent probabilities for missing values in label-free proteomics
title_fullStr Neither random nor censored: estimating intensity-dependent probabilities for missing values in label-free proteomics
title_full_unstemmed Neither random nor censored: estimating intensity-dependent probabilities for missing values in label-free proteomics
title_short Neither random nor censored: estimating intensity-dependent probabilities for missing values in label-free proteomics
title_sort neither random nor censored: estimating intensity-dependent probabilities for missing values in label-free proteomics
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10174703/
https://www.ncbi.nlm.nih.gov/pubmed/37067487
http://dx.doi.org/10.1093/bioinformatics/btad200
work_keys_str_mv AT limengbo neitherrandomnorcensoredestimatingintensitydependentprobabilitiesformissingvaluesinlabelfreeproteomics
AT smythgordonk neitherrandomnorcensoredestimatingintensitydependentprobabilitiesformissingvaluesinlabelfreeproteomics