Cargando…

Mapping nanocrystalline disorder within an amorphous metal–organic framework

Intentionally disordered metal–organic frameworks (MOFs) display rich functional behaviour. However, the characterisation of their atomic structures remains incredibly challenging. X-ray pair distribution function techniques have been pivotal in determining their average local structure but are larg...

Descripción completa

Detalles Bibliográficos
Autores principales: Sapnik, Adam F., Sun, Chao, Laulainen, Joonatan E. M., Johnstone, Duncan N., Brydson, Rik, Johnson, Timothy, Midgley, Paul A., Bennett, Thomas D., Collins, Sean M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175482/
https://www.ncbi.nlm.nih.gov/pubmed/37169838
http://dx.doi.org/10.1038/s42004-023-00891-9
_version_ 1785040221290627072
author Sapnik, Adam F.
Sun, Chao
Laulainen, Joonatan E. M.
Johnstone, Duncan N.
Brydson, Rik
Johnson, Timothy
Midgley, Paul A.
Bennett, Thomas D.
Collins, Sean M.
author_facet Sapnik, Adam F.
Sun, Chao
Laulainen, Joonatan E. M.
Johnstone, Duncan N.
Brydson, Rik
Johnson, Timothy
Midgley, Paul A.
Bennett, Thomas D.
Collins, Sean M.
author_sort Sapnik, Adam F.
collection PubMed
description Intentionally disordered metal–organic frameworks (MOFs) display rich functional behaviour. However, the characterisation of their atomic structures remains incredibly challenging. X-ray pair distribution function techniques have been pivotal in determining their average local structure but are largely insensitive to spatial variations in the structure. Fe-BTC (BTC = 1,3,5-benzenetricarboxylate) is a nanocomposite MOF, known for its catalytic properties, comprising crystalline nanoparticles and an amorphous matrix. Here, we use scanning electron diffraction to first map the crystalline and amorphous components to evaluate domain size and then to carry out electron pair distribution function analysis to probe the spatially separated atomic structure of the amorphous matrix. Further Bragg scattering analysis reveals systematic orientational disorder within Fe-BTC’s nanocrystallites, showing over 10° of continuous lattice rotation across single particles. Finally, we identify candidate unit cells for the crystalline component. These independent structural analyses quantify disorder in Fe-BTC at the critical length scale for engineering composite MOF materials.
format Online
Article
Text
id pubmed-10175482
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-101754822023-05-13 Mapping nanocrystalline disorder within an amorphous metal–organic framework Sapnik, Adam F. Sun, Chao Laulainen, Joonatan E. M. Johnstone, Duncan N. Brydson, Rik Johnson, Timothy Midgley, Paul A. Bennett, Thomas D. Collins, Sean M. Commun Chem Article Intentionally disordered metal–organic frameworks (MOFs) display rich functional behaviour. However, the characterisation of their atomic structures remains incredibly challenging. X-ray pair distribution function techniques have been pivotal in determining their average local structure but are largely insensitive to spatial variations in the structure. Fe-BTC (BTC = 1,3,5-benzenetricarboxylate) is a nanocomposite MOF, known for its catalytic properties, comprising crystalline nanoparticles and an amorphous matrix. Here, we use scanning electron diffraction to first map the crystalline and amorphous components to evaluate domain size and then to carry out electron pair distribution function analysis to probe the spatially separated atomic structure of the amorphous matrix. Further Bragg scattering analysis reveals systematic orientational disorder within Fe-BTC’s nanocrystallites, showing over 10° of continuous lattice rotation across single particles. Finally, we identify candidate unit cells for the crystalline component. These independent structural analyses quantify disorder in Fe-BTC at the critical length scale for engineering composite MOF materials. Nature Publishing Group UK 2023-05-11 /pmc/articles/PMC10175482/ /pubmed/37169838 http://dx.doi.org/10.1038/s42004-023-00891-9 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Sapnik, Adam F.
Sun, Chao
Laulainen, Joonatan E. M.
Johnstone, Duncan N.
Brydson, Rik
Johnson, Timothy
Midgley, Paul A.
Bennett, Thomas D.
Collins, Sean M.
Mapping nanocrystalline disorder within an amorphous metal–organic framework
title Mapping nanocrystalline disorder within an amorphous metal–organic framework
title_full Mapping nanocrystalline disorder within an amorphous metal–organic framework
title_fullStr Mapping nanocrystalline disorder within an amorphous metal–organic framework
title_full_unstemmed Mapping nanocrystalline disorder within an amorphous metal–organic framework
title_short Mapping nanocrystalline disorder within an amorphous metal–organic framework
title_sort mapping nanocrystalline disorder within an amorphous metal–organic framework
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175482/
https://www.ncbi.nlm.nih.gov/pubmed/37169838
http://dx.doi.org/10.1038/s42004-023-00891-9
work_keys_str_mv AT sapnikadamf mappingnanocrystallinedisorderwithinanamorphousmetalorganicframework
AT sunchao mappingnanocrystallinedisorderwithinanamorphousmetalorganicframework
AT laulainenjoonatanem mappingnanocrystallinedisorderwithinanamorphousmetalorganicframework
AT johnstoneduncann mappingnanocrystallinedisorderwithinanamorphousmetalorganicframework
AT brydsonrik mappingnanocrystallinedisorderwithinanamorphousmetalorganicframework
AT johnsontimothy mappingnanocrystallinedisorderwithinanamorphousmetalorganicframework
AT midgleypaula mappingnanocrystallinedisorderwithinanamorphousmetalorganicframework
AT bennettthomasd mappingnanocrystallinedisorderwithinanamorphousmetalorganicframework
AT collinsseanm mappingnanocrystallinedisorderwithinanamorphousmetalorganicframework