Cargando…

Microbial community structure and diversity in fish-flower (mint) symbiosis

The fish-flower symbiosis model is an eco-friendly sustainable farming technology combining plants, fish and microorganisms in a recirculating aquaculture system. However, there are few studies on the structure and diversity of microbial communities in fish intestines, culture water and plant roots...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jianglong, Xie, Yufen, Zhang, Guangdi, Pan, Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175524/
https://www.ncbi.nlm.nih.gov/pubmed/37166527
http://dx.doi.org/10.1186/s13568-023-01549-4
Descripción
Sumario:The fish-flower symbiosis model is an eco-friendly sustainable farming technology combining plants, fish and microorganisms in a recirculating aquaculture system. However, there are few studies on the structure and diversity of microbial communities in fish intestines, culture water and plant roots during fish-flower symbiosis. Here, we cultured carp (Cyprinus carpio), crucian carp (Carassius auratus) and grass carp (Ctenopharyngodon idella) with mint (Mentha spicala L.) and extracted total genomic DNA from intestinal microorganisms, culture-water microorganisms and root microorganisms for each fish species for high-throughput sequencing of 16S rRNA genes. Analysis of microbial community structure and diversity revealed changes in abundance of microbial genera in the intestines and culture water of each fish species, including changes in the dominant taxa. Pirellula, Truepera, Aquincola, Cetobacterium and Luteolibacter were widespread in the fish intestine, culture water and mint root system. This study revealed the effects of mint feeding on the structure and diversity of microbial communities of fish, water bodies and the mint root system during fish-flower symbiosis, providing a theoretical reference for the promotion and application of fish-flower (mint) symbiosis technology and healthy fish culture technology.