Cargando…

Rational Design of Cellulosic Triboelectric Materials for Self-Powered Wearable Electronics

With the rapid development of the Internet of Things and flexible electronic technologies, there is a growing demand for wireless, sustainable, multifunctional, and independently operating self-powered wearable devices. Nevertheless, structural flexibility, long operating time, and wearing comfort h...

Descripción completa

Detalles Bibliográficos
Autores principales: Meng, Xiangjiang, Cai, Chenchen, Luo, Bin, Liu, Tao, Shao, Yuzheng, Wang, Shuangfei, Nie, Shuangxi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175533/
https://www.ncbi.nlm.nih.gov/pubmed/37166487
http://dx.doi.org/10.1007/s40820-023-01094-6
Descripción
Sumario:With the rapid development of the Internet of Things and flexible electronic technologies, there is a growing demand for wireless, sustainable, multifunctional, and independently operating self-powered wearable devices. Nevertheless, structural flexibility, long operating time, and wearing comfort have become key requirements for the widespread adoption of wearable electronics. Triboelectric nanogenerators as a distributed energy harvesting technology have great potential for application development in wearable sensing. Compared with rigid electronics, cellulosic self-powered wearable electronics have significant advantages in terms of flexibility, breathability, and functionality. In this paper, the research progress of advanced cellulosic triboelectric materials for self-powered wearable electronics is reviewed. The interfacial characteristics of cellulose are introduced from the top-down, bottom-up, and interfacial characteristics of the composite material preparation process. Meanwhile, the modulation strategies of triboelectric properties of cellulosic triboelectric materials are presented. Furthermore, the design strategies of triboelectric materials such as surface functionalization, interfacial structure design, and vacuum-assisted self-assembly are systematically discussed. In particular, cellulosic self-powered wearable electronics in the fields of human energy harvesting, tactile sensing, health monitoring, human–machine interaction, and intelligent fire warning are outlined in detail. Finally, the current challenges and future development directions of cellulosic triboelectric materials for self-powered wearable electronics are discussed. [Image: see text]