Cargando…
Metal3D: a general deep learning framework for accurate metal ion location prediction in proteins
Metal ions are essential cofactors for many proteins and play a crucial role in many applications such as enzyme design or design of protein-protein interactions because they are biologically abundant, tether to the protein using strong interactions, and have favorable catalytic properties. Computat...
Autores principales: | Dürr, Simon L., Levy, Andrea, Rothlisberger, Ursula |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175565/ https://www.ncbi.nlm.nih.gov/pubmed/37169763 http://dx.doi.org/10.1038/s41467-023-37870-6 |
Ejemplares similares
-
Electronic Structure
and d–d Spectrum of Metal–Organic
Frameworks with Transition-Metal Ions
por: Popov, Ilya, et al.
Publicado: (2023) -
Extraction of Metal Ions with Metal–Organic Frameworks
por: Manousi, Natalia, et al.
Publicado: (2019) -
Location determination of metal nanoparticles relative to a metal-organic framework
por: Chen, Yu-Zhen, et al.
Publicado: (2019) -
Pitfalls in the location of guest molecules in metal-organic frameworks
por: Poręba, Tomasz, et al.
Publicado: (2022) -
Reply to: Pitfalls in the location of guest molecules in metal-organic frameworks
por: Wang, Bin, et al.
Publicado: (2022)