Cargando…
Towards realistic privacy-preserving deep learning over encrypted medical data
Cardiovascular disease supposes a substantial fraction of healthcare systems. The invisible nature of these pathologies demands solutions that enable remote monitoring and tracking. Deep Learning (DL) has arisen as a solution in many fields, and in healthcare, multiple successful applications exist...
Autores principales: | Cabrero-Holgueras, José, Pastrana, Sergio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175772/ https://www.ncbi.nlm.nih.gov/pubmed/37187785 http://dx.doi.org/10.3389/fcvm.2023.1117360 |
Ejemplares similares
-
Towards realistic privacy-preserving deep learning over encrypted medical data
por: Cabrero-Holgueras, José, et al.
Publicado: (2023) -
Towards automated homomorphic encryption parameter selection with fuzzy logic and linear programming
por: Cabrero-Holgueras, José, et al.
Publicado: (2023) -
Homomorphic Encryption-Based Federated Privacy Preservation for Deep Active Learning
por: Kurniawan, Hendra, et al.
Publicado: (2022) -
Privacy-preserving k-NN interpolation over two encrypted databases
por: Osmanoglu, Murat, et al.
Publicado: (2022) -
Private Deep Learning for Healthcare
por: Cabrero Holgueras, Jose
Publicado: (2021)