Cargando…

Gas-phase microactuation using kinetically controlled surface states of ultrathin catalytic sheets

Biological systems convert chemical energy into mechanical work by using protein catalysts that assume kinetically controlled conformational states. Synthetic chemomechanical systems using chemical catalysis have been reported, but they are slow, require high temperatures to operate, or indirectly p...

Descripción completa

Detalles Bibliográficos
Autores principales: Bao, Nanqi, Liu, Qingkun, Reynolds, Michael F., Figueras, Marc, Smith, Evangelos, Wang, Wei, Cao, Michael C., Muller, David A., Mavrikakis, Manos, Cohen, Itai, McEuen, Paul L., Abbott, Nicholas L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175785/
https://www.ncbi.nlm.nih.gov/pubmed/37126707
http://dx.doi.org/10.1073/pnas.2221740120
_version_ 1785040287070945280
author Bao, Nanqi
Liu, Qingkun
Reynolds, Michael F.
Figueras, Marc
Smith, Evangelos
Wang, Wei
Cao, Michael C.
Muller, David A.
Mavrikakis, Manos
Cohen, Itai
McEuen, Paul L.
Abbott, Nicholas L.
author_facet Bao, Nanqi
Liu, Qingkun
Reynolds, Michael F.
Figueras, Marc
Smith, Evangelos
Wang, Wei
Cao, Michael C.
Muller, David A.
Mavrikakis, Manos
Cohen, Itai
McEuen, Paul L.
Abbott, Nicholas L.
author_sort Bao, Nanqi
collection PubMed
description Biological systems convert chemical energy into mechanical work by using protein catalysts that assume kinetically controlled conformational states. Synthetic chemomechanical systems using chemical catalysis have been reported, but they are slow, require high temperatures to operate, or indirectly perform work by harnessing reaction products in liquids (e.g., heat or protons). Here, we introduce a bioinspired chemical strategy for gas-phase chemomechanical transduction that sequences the elementary steps of catalytic reactions on ultrathin (<10 nm) platinum sheets to generate surface stresses that directly drive microactuation (bending radii of 700 nm) at ambient conditions (T = 20 °C; P(total) = 1 atm). When fueled by hydrogen gas and either oxygen or ozone gas, we show how kinetically controlled surface states of the catalyst can be exploited to achieve fast actuation (600 ms/cycle) at 20 °C. We also show that the approach can integrate photochemically controlled reactions and can be used to drive the reconfiguration of microhinges and complex origami- and kirigami-based microstructures.
format Online
Article
Text
id pubmed-10175785
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-101757852023-11-01 Gas-phase microactuation using kinetically controlled surface states of ultrathin catalytic sheets Bao, Nanqi Liu, Qingkun Reynolds, Michael F. Figueras, Marc Smith, Evangelos Wang, Wei Cao, Michael C. Muller, David A. Mavrikakis, Manos Cohen, Itai McEuen, Paul L. Abbott, Nicholas L. Proc Natl Acad Sci U S A Physical Sciences Biological systems convert chemical energy into mechanical work by using protein catalysts that assume kinetically controlled conformational states. Synthetic chemomechanical systems using chemical catalysis have been reported, but they are slow, require high temperatures to operate, or indirectly perform work by harnessing reaction products in liquids (e.g., heat or protons). Here, we introduce a bioinspired chemical strategy for gas-phase chemomechanical transduction that sequences the elementary steps of catalytic reactions on ultrathin (<10 nm) platinum sheets to generate surface stresses that directly drive microactuation (bending radii of 700 nm) at ambient conditions (T = 20 °C; P(total) = 1 atm). When fueled by hydrogen gas and either oxygen or ozone gas, we show how kinetically controlled surface states of the catalyst can be exploited to achieve fast actuation (600 ms/cycle) at 20 °C. We also show that the approach can integrate photochemically controlled reactions and can be used to drive the reconfiguration of microhinges and complex origami- and kirigami-based microstructures. National Academy of Sciences 2023-05-01 2023-05-09 /pmc/articles/PMC10175785/ /pubmed/37126707 http://dx.doi.org/10.1073/pnas.2221740120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Physical Sciences
Bao, Nanqi
Liu, Qingkun
Reynolds, Michael F.
Figueras, Marc
Smith, Evangelos
Wang, Wei
Cao, Michael C.
Muller, David A.
Mavrikakis, Manos
Cohen, Itai
McEuen, Paul L.
Abbott, Nicholas L.
Gas-phase microactuation using kinetically controlled surface states of ultrathin catalytic sheets
title Gas-phase microactuation using kinetically controlled surface states of ultrathin catalytic sheets
title_full Gas-phase microactuation using kinetically controlled surface states of ultrathin catalytic sheets
title_fullStr Gas-phase microactuation using kinetically controlled surface states of ultrathin catalytic sheets
title_full_unstemmed Gas-phase microactuation using kinetically controlled surface states of ultrathin catalytic sheets
title_short Gas-phase microactuation using kinetically controlled surface states of ultrathin catalytic sheets
title_sort gas-phase microactuation using kinetically controlled surface states of ultrathin catalytic sheets
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175785/
https://www.ncbi.nlm.nih.gov/pubmed/37126707
http://dx.doi.org/10.1073/pnas.2221740120
work_keys_str_mv AT baonanqi gasphasemicroactuationusingkineticallycontrolledsurfacestatesofultrathincatalyticsheets
AT liuqingkun gasphasemicroactuationusingkineticallycontrolledsurfacestatesofultrathincatalyticsheets
AT reynoldsmichaelf gasphasemicroactuationusingkineticallycontrolledsurfacestatesofultrathincatalyticsheets
AT figuerasmarc gasphasemicroactuationusingkineticallycontrolledsurfacestatesofultrathincatalyticsheets
AT smithevangelos gasphasemicroactuationusingkineticallycontrolledsurfacestatesofultrathincatalyticsheets
AT wangwei gasphasemicroactuationusingkineticallycontrolledsurfacestatesofultrathincatalyticsheets
AT caomichaelc gasphasemicroactuationusingkineticallycontrolledsurfacestatesofultrathincatalyticsheets
AT mullerdavida gasphasemicroactuationusingkineticallycontrolledsurfacestatesofultrathincatalyticsheets
AT mavrikakismanos gasphasemicroactuationusingkineticallycontrolledsurfacestatesofultrathincatalyticsheets
AT cohenitai gasphasemicroactuationusingkineticallycontrolledsurfacestatesofultrathincatalyticsheets
AT mceuenpaull gasphasemicroactuationusingkineticallycontrolledsurfacestatesofultrathincatalyticsheets
AT abbottnicholasl gasphasemicroactuationusingkineticallycontrolledsurfacestatesofultrathincatalyticsheets