Cargando…
Ferroptosis-related genes in cervical cancer as biomarkers for predicting the prognosis of gynecological tumors
Background: Ferroptosis has been identified as a potent predictor of cancer prognosis. Currently, cervical cancer ranks among the most prevalent malignant tumors in women. Enhancing the prognosis for patients experiencing metastasis or recurrence is of critical importance. Consequently, investigatin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175786/ https://www.ncbi.nlm.nih.gov/pubmed/37187896 http://dx.doi.org/10.3389/fmolb.2023.1188027 |
_version_ | 1785040287285903360 |
---|---|
author | Han, Songtao Wang, Senyu Lv, Xiang Li, Dan Feng, Yangchun |
author_facet | Han, Songtao Wang, Senyu Lv, Xiang Li, Dan Feng, Yangchun |
author_sort | Han, Songtao |
collection | PubMed |
description | Background: Ferroptosis has been identified as a potent predictor of cancer prognosis. Currently, cervical cancer ranks among the most prevalent malignant tumors in women. Enhancing the prognosis for patients experiencing metastasis or recurrence is of critical importance. Consequently, investigating the potential of ferroptosis-related genes (FRGs) as prognostic biomarkers for cervical cancer patients is essential. Methods: In this study, 52 FRGs were obtained from the GSE9750, GSE7410, GSE63514, and FerrDb databases. Six genes possessing prognostic characteristics were identified: JUN, TSC22D3, SLC11A2, DDIT4, DUOX1, and HELLS. The multivariate Cox regression analysis was employed to establish and validate the prognostic model, while simultaneously performing a correlation analysis of the immune microenvironment. Results: The prediction model was validated using TCGA-CESC and GSE44001 datasets. Furthermore, the prognostic model was validated in endometrial cancer and ovarian serous cystadenocarcinoma cases. KM curves revealed significant differences in OS between high-risk and low-risk groups. ROC curves demonstrated the stability and accuracy of the prognostic model established in this study. Concurrently, the research identified a higher proportion of immune cells in patients within the low-risk group. Additionally, the expression of immune checkpoints (TIGIT, CTLA4, BTLA, CD27, and CD28) was elevated in the low-risk group. Ultimately, 4 FRGs in cervical cancer were corroborated through qRT-PCR. Conclusion: The FRGs prognostic model for cervical cancer not only exhibits robust stability and accuracy in predicting the prognosis of cervical cancer patients but also demonstrates considerable prognostic value in other gynecological tumors. |
format | Online Article Text |
id | pubmed-10175786 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-101757862023-05-13 Ferroptosis-related genes in cervical cancer as biomarkers for predicting the prognosis of gynecological tumors Han, Songtao Wang, Senyu Lv, Xiang Li, Dan Feng, Yangchun Front Mol Biosci Molecular Biosciences Background: Ferroptosis has been identified as a potent predictor of cancer prognosis. Currently, cervical cancer ranks among the most prevalent malignant tumors in women. Enhancing the prognosis for patients experiencing metastasis or recurrence is of critical importance. Consequently, investigating the potential of ferroptosis-related genes (FRGs) as prognostic biomarkers for cervical cancer patients is essential. Methods: In this study, 52 FRGs were obtained from the GSE9750, GSE7410, GSE63514, and FerrDb databases. Six genes possessing prognostic characteristics were identified: JUN, TSC22D3, SLC11A2, DDIT4, DUOX1, and HELLS. The multivariate Cox regression analysis was employed to establish and validate the prognostic model, while simultaneously performing a correlation analysis of the immune microenvironment. Results: The prediction model was validated using TCGA-CESC and GSE44001 datasets. Furthermore, the prognostic model was validated in endometrial cancer and ovarian serous cystadenocarcinoma cases. KM curves revealed significant differences in OS between high-risk and low-risk groups. ROC curves demonstrated the stability and accuracy of the prognostic model established in this study. Concurrently, the research identified a higher proportion of immune cells in patients within the low-risk group. Additionally, the expression of immune checkpoints (TIGIT, CTLA4, BTLA, CD27, and CD28) was elevated in the low-risk group. Ultimately, 4 FRGs in cervical cancer were corroborated through qRT-PCR. Conclusion: The FRGs prognostic model for cervical cancer not only exhibits robust stability and accuracy in predicting the prognosis of cervical cancer patients but also demonstrates considerable prognostic value in other gynecological tumors. Frontiers Media S.A. 2023-04-28 /pmc/articles/PMC10175786/ /pubmed/37187896 http://dx.doi.org/10.3389/fmolb.2023.1188027 Text en Copyright © 2023 Han, Wang, Lv, Li and Feng. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Molecular Biosciences Han, Songtao Wang, Senyu Lv, Xiang Li, Dan Feng, Yangchun Ferroptosis-related genes in cervical cancer as biomarkers for predicting the prognosis of gynecological tumors |
title | Ferroptosis-related genes in cervical cancer as biomarkers for predicting the prognosis of gynecological tumors |
title_full | Ferroptosis-related genes in cervical cancer as biomarkers for predicting the prognosis of gynecological tumors |
title_fullStr | Ferroptosis-related genes in cervical cancer as biomarkers for predicting the prognosis of gynecological tumors |
title_full_unstemmed | Ferroptosis-related genes in cervical cancer as biomarkers for predicting the prognosis of gynecological tumors |
title_short | Ferroptosis-related genes in cervical cancer as biomarkers for predicting the prognosis of gynecological tumors |
title_sort | ferroptosis-related genes in cervical cancer as biomarkers for predicting the prognosis of gynecological tumors |
topic | Molecular Biosciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175786/ https://www.ncbi.nlm.nih.gov/pubmed/37187896 http://dx.doi.org/10.3389/fmolb.2023.1188027 |
work_keys_str_mv | AT hansongtao ferroptosisrelatedgenesincervicalcancerasbiomarkersforpredictingtheprognosisofgynecologicaltumors AT wangsenyu ferroptosisrelatedgenesincervicalcancerasbiomarkersforpredictingtheprognosisofgynecologicaltumors AT lvxiang ferroptosisrelatedgenesincervicalcancerasbiomarkersforpredictingtheprognosisofgynecologicaltumors AT lidan ferroptosisrelatedgenesincervicalcancerasbiomarkersforpredictingtheprognosisofgynecologicaltumors AT fengyangchun ferroptosisrelatedgenesincervicalcancerasbiomarkersforpredictingtheprognosisofgynecologicaltumors |