Cargando…

Differential regional importance mapping for thyroid nodule malignancy prediction with potential to improve needle aspiration biopsy sampling reliability

OBJECTIVE: Existing guidelines for ultrasound-guided fine-needle aspiration biopsy lack specifications on sampling sites, but the number of biopsies improves diagnostic reliability. We propose the use of class activation maps (CAMs) and our modified malignancy-specific heat maps that locate importan...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Liping, Wang, Yuan, Lu, Wenliang, Xu, Dong, Yao, Jincao, Wang, Lijing, Xu, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175814/
https://www.ncbi.nlm.nih.gov/pubmed/37188203
http://dx.doi.org/10.3389/fonc.2023.1136922
_version_ 1785040293931778048
author Wang, Liping
Wang, Yuan
Lu, Wenliang
Xu, Dong
Yao, Jincao
Wang, Lijing
Xu, Lei
author_facet Wang, Liping
Wang, Yuan
Lu, Wenliang
Xu, Dong
Yao, Jincao
Wang, Lijing
Xu, Lei
author_sort Wang, Liping
collection PubMed
description OBJECTIVE: Existing guidelines for ultrasound-guided fine-needle aspiration biopsy lack specifications on sampling sites, but the number of biopsies improves diagnostic reliability. We propose the use of class activation maps (CAMs) and our modified malignancy-specific heat maps that locate important deep representations of thyroid nodules for class predictions. METHODS: We applied adversarial noise perturbations to the segmented concentric “hot” nodular regions of equal sizes to differentiate regional importance for the malignancy diagnostic performances of an accurate ultrasound-based artificial intelligence computer-aided diagnosis (AI-CADx) system using 2,602 retrospectively collected thyroid nodules with known histopathological diagnosis. RESULTS: The AI system demonstrated high diagnostic performance with an area under the curve (AUC) value of 0.9302 and good nodule identification capability with a median dice coefficient >0.9 when compared to radiologists’ segmentations. Experiments confirmed that the CAM-based heat maps reflect the differentiable importance of different nodular regions for an AI-CADx system to make its predictions. No less importantly, the hot regions in malignancy heat maps of ultrasound images in comparison with the inactivated regions of the same 100 malignant nodules randomly selected from the dataset had higher summed frequency-weighted feature scores of 6.04 versus 4.96 rated by radiologists with more than 15 years of ultrasound examination experience according to widely used ultrasound-based risk stratification American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS) in terms of nodule composition, echogenicity, and echogenic foci, excluding shape and margin attributes, which could only be evaluated on the whole rather than on the sub-nodular component levels. In addition, we show examples demonstrating good spatial correspondence of highlighted regions of malignancy heat map to malignant tumor cell-rich regions in hematoxylin and eosin-stained histopathological images. CONCLUSION: Our proposed CAM-based ultrasonographic malignancy heat map provides quantitative visualization of malignancy heterogeneity within a tumor, and it is of clinical interest to investigate in the future its usefulness to improve fine-needle aspiration biopsy (FNAB) sampling reliability by targeting potentially more suspicious sub-nodular regions.
format Online
Article
Text
id pubmed-10175814
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-101758142023-05-13 Differential regional importance mapping for thyroid nodule malignancy prediction with potential to improve needle aspiration biopsy sampling reliability Wang, Liping Wang, Yuan Lu, Wenliang Xu, Dong Yao, Jincao Wang, Lijing Xu, Lei Front Oncol Oncology OBJECTIVE: Existing guidelines for ultrasound-guided fine-needle aspiration biopsy lack specifications on sampling sites, but the number of biopsies improves diagnostic reliability. We propose the use of class activation maps (CAMs) and our modified malignancy-specific heat maps that locate important deep representations of thyroid nodules for class predictions. METHODS: We applied adversarial noise perturbations to the segmented concentric “hot” nodular regions of equal sizes to differentiate regional importance for the malignancy diagnostic performances of an accurate ultrasound-based artificial intelligence computer-aided diagnosis (AI-CADx) system using 2,602 retrospectively collected thyroid nodules with known histopathological diagnosis. RESULTS: The AI system demonstrated high diagnostic performance with an area under the curve (AUC) value of 0.9302 and good nodule identification capability with a median dice coefficient >0.9 when compared to radiologists’ segmentations. Experiments confirmed that the CAM-based heat maps reflect the differentiable importance of different nodular regions for an AI-CADx system to make its predictions. No less importantly, the hot regions in malignancy heat maps of ultrasound images in comparison with the inactivated regions of the same 100 malignant nodules randomly selected from the dataset had higher summed frequency-weighted feature scores of 6.04 versus 4.96 rated by radiologists with more than 15 years of ultrasound examination experience according to widely used ultrasound-based risk stratification American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS) in terms of nodule composition, echogenicity, and echogenic foci, excluding shape and margin attributes, which could only be evaluated on the whole rather than on the sub-nodular component levels. In addition, we show examples demonstrating good spatial correspondence of highlighted regions of malignancy heat map to malignant tumor cell-rich regions in hematoxylin and eosin-stained histopathological images. CONCLUSION: Our proposed CAM-based ultrasonographic malignancy heat map provides quantitative visualization of malignancy heterogeneity within a tumor, and it is of clinical interest to investigate in the future its usefulness to improve fine-needle aspiration biopsy (FNAB) sampling reliability by targeting potentially more suspicious sub-nodular regions. Frontiers Media S.A. 2023-04-28 /pmc/articles/PMC10175814/ /pubmed/37188203 http://dx.doi.org/10.3389/fonc.2023.1136922 Text en Copyright © 2023 Wang, Wang, Lu, Xu, Yao, Wang and Xu https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Oncology
Wang, Liping
Wang, Yuan
Lu, Wenliang
Xu, Dong
Yao, Jincao
Wang, Lijing
Xu, Lei
Differential regional importance mapping for thyroid nodule malignancy prediction with potential to improve needle aspiration biopsy sampling reliability
title Differential regional importance mapping for thyroid nodule malignancy prediction with potential to improve needle aspiration biopsy sampling reliability
title_full Differential regional importance mapping for thyroid nodule malignancy prediction with potential to improve needle aspiration biopsy sampling reliability
title_fullStr Differential regional importance mapping for thyroid nodule malignancy prediction with potential to improve needle aspiration biopsy sampling reliability
title_full_unstemmed Differential regional importance mapping for thyroid nodule malignancy prediction with potential to improve needle aspiration biopsy sampling reliability
title_short Differential regional importance mapping for thyroid nodule malignancy prediction with potential to improve needle aspiration biopsy sampling reliability
title_sort differential regional importance mapping for thyroid nodule malignancy prediction with potential to improve needle aspiration biopsy sampling reliability
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175814/
https://www.ncbi.nlm.nih.gov/pubmed/37188203
http://dx.doi.org/10.3389/fonc.2023.1136922
work_keys_str_mv AT wangliping differentialregionalimportancemappingforthyroidnodulemalignancypredictionwithpotentialtoimproveneedleaspirationbiopsysamplingreliability
AT wangyuan differentialregionalimportancemappingforthyroidnodulemalignancypredictionwithpotentialtoimproveneedleaspirationbiopsysamplingreliability
AT luwenliang differentialregionalimportancemappingforthyroidnodulemalignancypredictionwithpotentialtoimproveneedleaspirationbiopsysamplingreliability
AT xudong differentialregionalimportancemappingforthyroidnodulemalignancypredictionwithpotentialtoimproveneedleaspirationbiopsysamplingreliability
AT yaojincao differentialregionalimportancemappingforthyroidnodulemalignancypredictionwithpotentialtoimproveneedleaspirationbiopsysamplingreliability
AT wanglijing differentialregionalimportancemappingforthyroidnodulemalignancypredictionwithpotentialtoimproveneedleaspirationbiopsysamplingreliability
AT xulei differentialregionalimportancemappingforthyroidnodulemalignancypredictionwithpotentialtoimproveneedleaspirationbiopsysamplingreliability