Cargando…
Comprehensive clinical evaluation of deep learning-based auto-segmentation for radiotherapy in patients with cervical cancer
BACKGROUND AND PURPOSE: Deep learning-based models have been actively investigated for various aspects of radiotherapy. However, for cervical cancer, only a few studies dealing with the auto-segmentation of organs-at-risk (OARs) and clinical target volumes (CTVs) exist. This study aimed to train a d...
Autores principales: | Chung, Seung Yeun, Chang, Jee Suk, Kim, Yong Bae |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175826/ https://www.ncbi.nlm.nih.gov/pubmed/37188180 http://dx.doi.org/10.3389/fonc.2023.1119008 |
Ejemplares similares
-
Atlas-based auto-segmentation for postoperative radiotherapy planning in endometrial and cervical cancers
por: Kim, Nalee, et al.
Publicado: (2020) -
Deep learning‐based auto‐segmentation of clinical target volumes for radiotherapy treatment of cervical cancer
por: Ma, Chen‐Ying, et al.
Publicado: (2021) -
The clinical evaluation of atlas-based auto-segmentation for automatic contouring during cervical cancer radiotherapy
por: Li, Yi, et al.
Publicado: (2022) -
Deep learning auto-segmentation of cervical skeletal muscle for sarcopenia analysis in patients with head and neck cancer
por: Naser, Mohamed A., et al.
Publicado: (2022) -
Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery
por: Chung, Seung Yeun, et al.
Publicado: (2021)