Cargando…

A human FLII gene variant alters sarcomeric actin thin filament length and predisposes to cardiomyopathy

To better understand the genetic basis of heart disease, we identified a variant in the Flightless-I homolog (FLII) gene that generates a R1243H missense change and predisposes to cardiac remodeling across multiple previous human genome-wide association studies (GWAS). Since this gene is of unknown...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuwabara, Yasuhide, York, Allen J., Lin, Suh-Chin, Sargent, Michelle A., Grimes, Kelly M., Pirruccello, James P., Molkentin, Jeffery D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175844/
https://www.ncbi.nlm.nih.gov/pubmed/37126682
http://dx.doi.org/10.1073/pnas.2213696120
_version_ 1785040301059997696
author Kuwabara, Yasuhide
York, Allen J.
Lin, Suh-Chin
Sargent, Michelle A.
Grimes, Kelly M.
Pirruccello, James P.
Molkentin, Jeffery D.
author_facet Kuwabara, Yasuhide
York, Allen J.
Lin, Suh-Chin
Sargent, Michelle A.
Grimes, Kelly M.
Pirruccello, James P.
Molkentin, Jeffery D.
author_sort Kuwabara, Yasuhide
collection PubMed
description To better understand the genetic basis of heart disease, we identified a variant in the Flightless-I homolog (FLII) gene that generates a R1243H missense change and predisposes to cardiac remodeling across multiple previous human genome-wide association studies (GWAS). Since this gene is of unknown function in the mammalian heart we generated gain- and loss-of-function genetically altered mice, as well as knock-in mice with the syntenic R1245H amino acid substitution, which showed that Flii protein binds the sarcomeric actin thin filament and influences its length. Deletion of Flii from the heart, or mice with the R1245H amino acid substitution, show cardiomyopathy due to shortening of the actin thin filaments. Mechanistically, Flii is a known actin binding protein that we show associates with tropomodulin-1 (TMOD1) to regulate sarcomere thin filament length. Indeed, overexpression of leiomodin-2 in the heart, which lengthens the actin-containing thin filaments, partially rescued disease due to heart-specific deletion of Flii. Collectively, the identified FLII human variant likely increases cardiomyopathy risk through an alteration in sarcomere structure and associated contractile dynamics, like other sarcomere gene-based familial cardiomyopathies.
format Online
Article
Text
id pubmed-10175844
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-101758442023-11-01 A human FLII gene variant alters sarcomeric actin thin filament length and predisposes to cardiomyopathy Kuwabara, Yasuhide York, Allen J. Lin, Suh-Chin Sargent, Michelle A. Grimes, Kelly M. Pirruccello, James P. Molkentin, Jeffery D. Proc Natl Acad Sci U S A Biological Sciences To better understand the genetic basis of heart disease, we identified a variant in the Flightless-I homolog (FLII) gene that generates a R1243H missense change and predisposes to cardiac remodeling across multiple previous human genome-wide association studies (GWAS). Since this gene is of unknown function in the mammalian heart we generated gain- and loss-of-function genetically altered mice, as well as knock-in mice with the syntenic R1245H amino acid substitution, which showed that Flii protein binds the sarcomeric actin thin filament and influences its length. Deletion of Flii from the heart, or mice with the R1245H amino acid substitution, show cardiomyopathy due to shortening of the actin thin filaments. Mechanistically, Flii is a known actin binding protein that we show associates with tropomodulin-1 (TMOD1) to regulate sarcomere thin filament length. Indeed, overexpression of leiomodin-2 in the heart, which lengthens the actin-containing thin filaments, partially rescued disease due to heart-specific deletion of Flii. Collectively, the identified FLII human variant likely increases cardiomyopathy risk through an alteration in sarcomere structure and associated contractile dynamics, like other sarcomere gene-based familial cardiomyopathies. National Academy of Sciences 2023-05-01 2023-05-09 /pmc/articles/PMC10175844/ /pubmed/37126682 http://dx.doi.org/10.1073/pnas.2213696120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Kuwabara, Yasuhide
York, Allen J.
Lin, Suh-Chin
Sargent, Michelle A.
Grimes, Kelly M.
Pirruccello, James P.
Molkentin, Jeffery D.
A human FLII gene variant alters sarcomeric actin thin filament length and predisposes to cardiomyopathy
title A human FLII gene variant alters sarcomeric actin thin filament length and predisposes to cardiomyopathy
title_full A human FLII gene variant alters sarcomeric actin thin filament length and predisposes to cardiomyopathy
title_fullStr A human FLII gene variant alters sarcomeric actin thin filament length and predisposes to cardiomyopathy
title_full_unstemmed A human FLII gene variant alters sarcomeric actin thin filament length and predisposes to cardiomyopathy
title_short A human FLII gene variant alters sarcomeric actin thin filament length and predisposes to cardiomyopathy
title_sort human flii gene variant alters sarcomeric actin thin filament length and predisposes to cardiomyopathy
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175844/
https://www.ncbi.nlm.nih.gov/pubmed/37126682
http://dx.doi.org/10.1073/pnas.2213696120
work_keys_str_mv AT kuwabarayasuhide ahumanfliigenevariantalterssarcomericactinthinfilamentlengthandpredisposestocardiomyopathy
AT yorkallenj ahumanfliigenevariantalterssarcomericactinthinfilamentlengthandpredisposestocardiomyopathy
AT linsuhchin ahumanfliigenevariantalterssarcomericactinthinfilamentlengthandpredisposestocardiomyopathy
AT sargentmichellea ahumanfliigenevariantalterssarcomericactinthinfilamentlengthandpredisposestocardiomyopathy
AT grimeskellym ahumanfliigenevariantalterssarcomericactinthinfilamentlengthandpredisposestocardiomyopathy
AT pirruccellojamesp ahumanfliigenevariantalterssarcomericactinthinfilamentlengthandpredisposestocardiomyopathy
AT molkentinjefferyd ahumanfliigenevariantalterssarcomericactinthinfilamentlengthandpredisposestocardiomyopathy
AT kuwabarayasuhide humanfliigenevariantalterssarcomericactinthinfilamentlengthandpredisposestocardiomyopathy
AT yorkallenj humanfliigenevariantalterssarcomericactinthinfilamentlengthandpredisposestocardiomyopathy
AT linsuhchin humanfliigenevariantalterssarcomericactinthinfilamentlengthandpredisposestocardiomyopathy
AT sargentmichellea humanfliigenevariantalterssarcomericactinthinfilamentlengthandpredisposestocardiomyopathy
AT grimeskellym humanfliigenevariantalterssarcomericactinthinfilamentlengthandpredisposestocardiomyopathy
AT pirruccellojamesp humanfliigenevariantalterssarcomericactinthinfilamentlengthandpredisposestocardiomyopathy
AT molkentinjefferyd humanfliigenevariantalterssarcomericactinthinfilamentlengthandpredisposestocardiomyopathy