Cargando…

Modeling human skeletal development using human pluripotent stem cells

Chondrocytes and osteoblasts differentiated from induced pluripotent stem cells (iPSCs) will provide insights into skeletal development and genetic skeletal disorders and will generate cells for regenerative medicine applications. Here, we describe a method that directs iPSC-derived sclerotome to ch...

Descripción completa

Detalles Bibliográficos
Autores principales: Lamandé, Shireen R., Ng, Elizabeth S., Cameron, Trevor L., Kung, Louise H. W., Sampurno, Lisa, Rowley, Lynn, Lilianty, Jinia, Patria, Yudha Nur, Stenta, Tayla, Hanssen, Eric, Bell, Katrina M., Saxena, Ritika, Stok, Kathryn S., Stanley, Edouard G., Elefanty, Andrew G., Bateman, John F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175848/
https://www.ncbi.nlm.nih.gov/pubmed/37126720
http://dx.doi.org/10.1073/pnas.2211510120
Descripción
Sumario:Chondrocytes and osteoblasts differentiated from induced pluripotent stem cells (iPSCs) will provide insights into skeletal development and genetic skeletal disorders and will generate cells for regenerative medicine applications. Here, we describe a method that directs iPSC-derived sclerotome to chondroprogenitors in 3D pellet culture then to articular chondrocytes or, alternatively, along the growth plate cartilage pathway to become hypertrophic chondrocytes that can transition to osteoblasts. Osteogenic organoids deposit and mineralize a collagen I extracellular matrix (ECM), mirroring in vivo endochondral bone formation. We have identified gene expression signatures at key developmental stages including chondrocyte maturation, hypertrophy, and transition to osteoblasts and show that this system can be used to model genetic cartilage and bone disorders.