Cargando…

Modeling human skeletal development using human pluripotent stem cells

Chondrocytes and osteoblasts differentiated from induced pluripotent stem cells (iPSCs) will provide insights into skeletal development and genetic skeletal disorders and will generate cells for regenerative medicine applications. Here, we describe a method that directs iPSC-derived sclerotome to ch...

Descripción completa

Detalles Bibliográficos
Autores principales: Lamandé, Shireen R., Ng, Elizabeth S., Cameron, Trevor L., Kung, Louise H. W., Sampurno, Lisa, Rowley, Lynn, Lilianty, Jinia, Patria, Yudha Nur, Stenta, Tayla, Hanssen, Eric, Bell, Katrina M., Saxena, Ritika, Stok, Kathryn S., Stanley, Edouard G., Elefanty, Andrew G., Bateman, John F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175848/
https://www.ncbi.nlm.nih.gov/pubmed/37126720
http://dx.doi.org/10.1073/pnas.2211510120
_version_ 1785040301972258816
author Lamandé, Shireen R.
Ng, Elizabeth S.
Cameron, Trevor L.
Kung, Louise H. W.
Sampurno, Lisa
Rowley, Lynn
Lilianty, Jinia
Patria, Yudha Nur
Stenta, Tayla
Hanssen, Eric
Bell, Katrina M.
Saxena, Ritika
Stok, Kathryn S.
Stanley, Edouard G.
Elefanty, Andrew G.
Bateman, John F.
author_facet Lamandé, Shireen R.
Ng, Elizabeth S.
Cameron, Trevor L.
Kung, Louise H. W.
Sampurno, Lisa
Rowley, Lynn
Lilianty, Jinia
Patria, Yudha Nur
Stenta, Tayla
Hanssen, Eric
Bell, Katrina M.
Saxena, Ritika
Stok, Kathryn S.
Stanley, Edouard G.
Elefanty, Andrew G.
Bateman, John F.
author_sort Lamandé, Shireen R.
collection PubMed
description Chondrocytes and osteoblasts differentiated from induced pluripotent stem cells (iPSCs) will provide insights into skeletal development and genetic skeletal disorders and will generate cells for regenerative medicine applications. Here, we describe a method that directs iPSC-derived sclerotome to chondroprogenitors in 3D pellet culture then to articular chondrocytes or, alternatively, along the growth plate cartilage pathway to become hypertrophic chondrocytes that can transition to osteoblasts. Osteogenic organoids deposit and mineralize a collagen I extracellular matrix (ECM), mirroring in vivo endochondral bone formation. We have identified gene expression signatures at key developmental stages including chondrocyte maturation, hypertrophy, and transition to osteoblasts and show that this system can be used to model genetic cartilage and bone disorders.
format Online
Article
Text
id pubmed-10175848
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-101758482023-11-01 Modeling human skeletal development using human pluripotent stem cells Lamandé, Shireen R. Ng, Elizabeth S. Cameron, Trevor L. Kung, Louise H. W. Sampurno, Lisa Rowley, Lynn Lilianty, Jinia Patria, Yudha Nur Stenta, Tayla Hanssen, Eric Bell, Katrina M. Saxena, Ritika Stok, Kathryn S. Stanley, Edouard G. Elefanty, Andrew G. Bateman, John F. Proc Natl Acad Sci U S A Biological Sciences Chondrocytes and osteoblasts differentiated from induced pluripotent stem cells (iPSCs) will provide insights into skeletal development and genetic skeletal disorders and will generate cells for regenerative medicine applications. Here, we describe a method that directs iPSC-derived sclerotome to chondroprogenitors in 3D pellet culture then to articular chondrocytes or, alternatively, along the growth plate cartilage pathway to become hypertrophic chondrocytes that can transition to osteoblasts. Osteogenic organoids deposit and mineralize a collagen I extracellular matrix (ECM), mirroring in vivo endochondral bone formation. We have identified gene expression signatures at key developmental stages including chondrocyte maturation, hypertrophy, and transition to osteoblasts and show that this system can be used to model genetic cartilage and bone disorders. National Academy of Sciences 2023-05-01 2023-05-09 /pmc/articles/PMC10175848/ /pubmed/37126720 http://dx.doi.org/10.1073/pnas.2211510120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Lamandé, Shireen R.
Ng, Elizabeth S.
Cameron, Trevor L.
Kung, Louise H. W.
Sampurno, Lisa
Rowley, Lynn
Lilianty, Jinia
Patria, Yudha Nur
Stenta, Tayla
Hanssen, Eric
Bell, Katrina M.
Saxena, Ritika
Stok, Kathryn S.
Stanley, Edouard G.
Elefanty, Andrew G.
Bateman, John F.
Modeling human skeletal development using human pluripotent stem cells
title Modeling human skeletal development using human pluripotent stem cells
title_full Modeling human skeletal development using human pluripotent stem cells
title_fullStr Modeling human skeletal development using human pluripotent stem cells
title_full_unstemmed Modeling human skeletal development using human pluripotent stem cells
title_short Modeling human skeletal development using human pluripotent stem cells
title_sort modeling human skeletal development using human pluripotent stem cells
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175848/
https://www.ncbi.nlm.nih.gov/pubmed/37126720
http://dx.doi.org/10.1073/pnas.2211510120
work_keys_str_mv AT lamandeshireenr modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells
AT ngelizabeths modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells
AT camerontrevorl modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells
AT kunglouisehw modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells
AT sampurnolisa modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells
AT rowleylynn modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells
AT liliantyjinia modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells
AT patriayudhanur modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells
AT stentatayla modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells
AT hansseneric modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells
AT bellkatrinam modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells
AT saxenaritika modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells
AT stokkathryns modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells
AT stanleyedouardg modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells
AT elefantyandrewg modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells
AT batemanjohnf modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells