Cargando…
Modeling human skeletal development using human pluripotent stem cells
Chondrocytes and osteoblasts differentiated from induced pluripotent stem cells (iPSCs) will provide insights into skeletal development and genetic skeletal disorders and will generate cells for regenerative medicine applications. Here, we describe a method that directs iPSC-derived sclerotome to ch...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175848/ https://www.ncbi.nlm.nih.gov/pubmed/37126720 http://dx.doi.org/10.1073/pnas.2211510120 |
_version_ | 1785040301972258816 |
---|---|
author | Lamandé, Shireen R. Ng, Elizabeth S. Cameron, Trevor L. Kung, Louise H. W. Sampurno, Lisa Rowley, Lynn Lilianty, Jinia Patria, Yudha Nur Stenta, Tayla Hanssen, Eric Bell, Katrina M. Saxena, Ritika Stok, Kathryn S. Stanley, Edouard G. Elefanty, Andrew G. Bateman, John F. |
author_facet | Lamandé, Shireen R. Ng, Elizabeth S. Cameron, Trevor L. Kung, Louise H. W. Sampurno, Lisa Rowley, Lynn Lilianty, Jinia Patria, Yudha Nur Stenta, Tayla Hanssen, Eric Bell, Katrina M. Saxena, Ritika Stok, Kathryn S. Stanley, Edouard G. Elefanty, Andrew G. Bateman, John F. |
author_sort | Lamandé, Shireen R. |
collection | PubMed |
description | Chondrocytes and osteoblasts differentiated from induced pluripotent stem cells (iPSCs) will provide insights into skeletal development and genetic skeletal disorders and will generate cells for regenerative medicine applications. Here, we describe a method that directs iPSC-derived sclerotome to chondroprogenitors in 3D pellet culture then to articular chondrocytes or, alternatively, along the growth plate cartilage pathway to become hypertrophic chondrocytes that can transition to osteoblasts. Osteogenic organoids deposit and mineralize a collagen I extracellular matrix (ECM), mirroring in vivo endochondral bone formation. We have identified gene expression signatures at key developmental stages including chondrocyte maturation, hypertrophy, and transition to osteoblasts and show that this system can be used to model genetic cartilage and bone disorders. |
format | Online Article Text |
id | pubmed-10175848 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-101758482023-11-01 Modeling human skeletal development using human pluripotent stem cells Lamandé, Shireen R. Ng, Elizabeth S. Cameron, Trevor L. Kung, Louise H. W. Sampurno, Lisa Rowley, Lynn Lilianty, Jinia Patria, Yudha Nur Stenta, Tayla Hanssen, Eric Bell, Katrina M. Saxena, Ritika Stok, Kathryn S. Stanley, Edouard G. Elefanty, Andrew G. Bateman, John F. Proc Natl Acad Sci U S A Biological Sciences Chondrocytes and osteoblasts differentiated from induced pluripotent stem cells (iPSCs) will provide insights into skeletal development and genetic skeletal disorders and will generate cells for regenerative medicine applications. Here, we describe a method that directs iPSC-derived sclerotome to chondroprogenitors in 3D pellet culture then to articular chondrocytes or, alternatively, along the growth plate cartilage pathway to become hypertrophic chondrocytes that can transition to osteoblasts. Osteogenic organoids deposit and mineralize a collagen I extracellular matrix (ECM), mirroring in vivo endochondral bone formation. We have identified gene expression signatures at key developmental stages including chondrocyte maturation, hypertrophy, and transition to osteoblasts and show that this system can be used to model genetic cartilage and bone disorders. National Academy of Sciences 2023-05-01 2023-05-09 /pmc/articles/PMC10175848/ /pubmed/37126720 http://dx.doi.org/10.1073/pnas.2211510120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Lamandé, Shireen R. Ng, Elizabeth S. Cameron, Trevor L. Kung, Louise H. W. Sampurno, Lisa Rowley, Lynn Lilianty, Jinia Patria, Yudha Nur Stenta, Tayla Hanssen, Eric Bell, Katrina M. Saxena, Ritika Stok, Kathryn S. Stanley, Edouard G. Elefanty, Andrew G. Bateman, John F. Modeling human skeletal development using human pluripotent stem cells |
title | Modeling human skeletal development using human pluripotent stem cells |
title_full | Modeling human skeletal development using human pluripotent stem cells |
title_fullStr | Modeling human skeletal development using human pluripotent stem cells |
title_full_unstemmed | Modeling human skeletal development using human pluripotent stem cells |
title_short | Modeling human skeletal development using human pluripotent stem cells |
title_sort | modeling human skeletal development using human pluripotent stem cells |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175848/ https://www.ncbi.nlm.nih.gov/pubmed/37126720 http://dx.doi.org/10.1073/pnas.2211510120 |
work_keys_str_mv | AT lamandeshireenr modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells AT ngelizabeths modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells AT camerontrevorl modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells AT kunglouisehw modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells AT sampurnolisa modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells AT rowleylynn modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells AT liliantyjinia modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells AT patriayudhanur modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells AT stentatayla modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells AT hansseneric modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells AT bellkatrinam modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells AT saxenaritika modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells AT stokkathryns modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells AT stanleyedouardg modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells AT elefantyandrewg modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells AT batemanjohnf modelinghumanskeletaldevelopmentusinghumanpluripotentstemcells |