Cargando…

l-Ascorbic Acid Treatment of Electrochemical Graphene Nanosheets: Reduction Optimization and Application for De-Icing, Water Uptake Prevention, and Corrosion Resistance

[Image: see text] The aeronautical industry demands facile lightweight and low-cost solutions to address climate crisis challenges. Graphene can be a valid candidate to tackle these functionalities, although its upscalability remains difficult to achieve. Consequently, graphene-related materials (GR...

Descripción completa

Detalles Bibliográficos
Autores principales: Ostermann, Markus, Bilotto, Pierluigi, Kadlec, Martin, Schodl, Jürgen, Duchoslav, Jiri, Stöger-Pollach, Michael, Lieberzeit, Peter, Valtiner, Markus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10176320/
https://www.ncbi.nlm.nih.gov/pubmed/37125734
http://dx.doi.org/10.1021/acsami.2c22854
Descripción
Sumario:[Image: see text] The aeronautical industry demands facile lightweight and low-cost solutions to address climate crisis challenges. Graphene can be a valid candidate to tackle these functionalities, although its upscalability remains difficult to achieve. Consequently, graphene-related materials (GRM) are gathering massive attention as top-down graphite exfoliation processes at the industrial scale are feasible and often employed. In this work, environmentally friendly produced partially oxidized graphene nanosheets (POGNs) reduced by green solvents such as l-Ascorbic Acid to rGNs are proposed to deliver functional coatings based on a glass fiber composite or coated Al2024 T3 for strategic R&D questions in the aeronautical industry, i.e., low energy production, de-icing, and water uptake. In detail, energy efficiency in rGNs production is assessed via response-surface modeling of the powder conductivity, hence proposing an optimized reduction window. De-Icing functionality is verified by measuring the stable electrothermal property of an rGNs based composite over 24 h, and water uptake is elucidated by evaluating electrochemical and corrosion properties. Moreover, a mathematical model is proposed to depict the relation between the layers’ sheet resistance and applied rGNs mass per area, which extends the system to other graphene-related materials, conductive two-dimensional materials, and various substrates. To conclude, the proposed system based on rGNs and epoxy paves the way for future multifunctional coatings, able to enhance the resistance of surfaces, such as airplane wings, in a flight harsh environment.