Cargando…
l-Ascorbic Acid Treatment of Electrochemical Graphene Nanosheets: Reduction Optimization and Application for De-Icing, Water Uptake Prevention, and Corrosion Resistance
[Image: see text] The aeronautical industry demands facile lightweight and low-cost solutions to address climate crisis challenges. Graphene can be a valid candidate to tackle these functionalities, although its upscalability remains difficult to achieve. Consequently, graphene-related materials (GR...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10176320/ https://www.ncbi.nlm.nih.gov/pubmed/37125734 http://dx.doi.org/10.1021/acsami.2c22854 |
_version_ | 1785040407705419776 |
---|---|
author | Ostermann, Markus Bilotto, Pierluigi Kadlec, Martin Schodl, Jürgen Duchoslav, Jiri Stöger-Pollach, Michael Lieberzeit, Peter Valtiner, Markus |
author_facet | Ostermann, Markus Bilotto, Pierluigi Kadlec, Martin Schodl, Jürgen Duchoslav, Jiri Stöger-Pollach, Michael Lieberzeit, Peter Valtiner, Markus |
author_sort | Ostermann, Markus |
collection | PubMed |
description | [Image: see text] The aeronautical industry demands facile lightweight and low-cost solutions to address climate crisis challenges. Graphene can be a valid candidate to tackle these functionalities, although its upscalability remains difficult to achieve. Consequently, graphene-related materials (GRM) are gathering massive attention as top-down graphite exfoliation processes at the industrial scale are feasible and often employed. In this work, environmentally friendly produced partially oxidized graphene nanosheets (POGNs) reduced by green solvents such as l-Ascorbic Acid to rGNs are proposed to deliver functional coatings based on a glass fiber composite or coated Al2024 T3 for strategic R&D questions in the aeronautical industry, i.e., low energy production, de-icing, and water uptake. In detail, energy efficiency in rGNs production is assessed via response-surface modeling of the powder conductivity, hence proposing an optimized reduction window. De-Icing functionality is verified by measuring the stable electrothermal property of an rGNs based composite over 24 h, and water uptake is elucidated by evaluating electrochemical and corrosion properties. Moreover, a mathematical model is proposed to depict the relation between the layers’ sheet resistance and applied rGNs mass per area, which extends the system to other graphene-related materials, conductive two-dimensional materials, and various substrates. To conclude, the proposed system based on rGNs and epoxy paves the way for future multifunctional coatings, able to enhance the resistance of surfaces, such as airplane wings, in a flight harsh environment. |
format | Online Article Text |
id | pubmed-10176320 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-101763202023-05-13 l-Ascorbic Acid Treatment of Electrochemical Graphene Nanosheets: Reduction Optimization and Application for De-Icing, Water Uptake Prevention, and Corrosion Resistance Ostermann, Markus Bilotto, Pierluigi Kadlec, Martin Schodl, Jürgen Duchoslav, Jiri Stöger-Pollach, Michael Lieberzeit, Peter Valtiner, Markus ACS Appl Mater Interfaces [Image: see text] The aeronautical industry demands facile lightweight and low-cost solutions to address climate crisis challenges. Graphene can be a valid candidate to tackle these functionalities, although its upscalability remains difficult to achieve. Consequently, graphene-related materials (GRM) are gathering massive attention as top-down graphite exfoliation processes at the industrial scale are feasible and often employed. In this work, environmentally friendly produced partially oxidized graphene nanosheets (POGNs) reduced by green solvents such as l-Ascorbic Acid to rGNs are proposed to deliver functional coatings based on a glass fiber composite or coated Al2024 T3 for strategic R&D questions in the aeronautical industry, i.e., low energy production, de-icing, and water uptake. In detail, energy efficiency in rGNs production is assessed via response-surface modeling of the powder conductivity, hence proposing an optimized reduction window. De-Icing functionality is verified by measuring the stable electrothermal property of an rGNs based composite over 24 h, and water uptake is elucidated by evaluating electrochemical and corrosion properties. Moreover, a mathematical model is proposed to depict the relation between the layers’ sheet resistance and applied rGNs mass per area, which extends the system to other graphene-related materials, conductive two-dimensional materials, and various substrates. To conclude, the proposed system based on rGNs and epoxy paves the way for future multifunctional coatings, able to enhance the resistance of surfaces, such as airplane wings, in a flight harsh environment. American Chemical Society 2023-04-26 /pmc/articles/PMC10176320/ /pubmed/37125734 http://dx.doi.org/10.1021/acsami.2c22854 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Ostermann, Markus Bilotto, Pierluigi Kadlec, Martin Schodl, Jürgen Duchoslav, Jiri Stöger-Pollach, Michael Lieberzeit, Peter Valtiner, Markus l-Ascorbic Acid Treatment of Electrochemical Graphene Nanosheets: Reduction Optimization and Application for De-Icing, Water Uptake Prevention, and Corrosion Resistance |
title | l-Ascorbic
Acid Treatment of Electrochemical
Graphene Nanosheets: Reduction Optimization and Application for De-Icing,
Water Uptake Prevention, and Corrosion Resistance |
title_full | l-Ascorbic
Acid Treatment of Electrochemical
Graphene Nanosheets: Reduction Optimization and Application for De-Icing,
Water Uptake Prevention, and Corrosion Resistance |
title_fullStr | l-Ascorbic
Acid Treatment of Electrochemical
Graphene Nanosheets: Reduction Optimization and Application for De-Icing,
Water Uptake Prevention, and Corrosion Resistance |
title_full_unstemmed | l-Ascorbic
Acid Treatment of Electrochemical
Graphene Nanosheets: Reduction Optimization and Application for De-Icing,
Water Uptake Prevention, and Corrosion Resistance |
title_short | l-Ascorbic
Acid Treatment of Electrochemical
Graphene Nanosheets: Reduction Optimization and Application for De-Icing,
Water Uptake Prevention, and Corrosion Resistance |
title_sort | l-ascorbic
acid treatment of electrochemical
graphene nanosheets: reduction optimization and application for de-icing,
water uptake prevention, and corrosion resistance |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10176320/ https://www.ncbi.nlm.nih.gov/pubmed/37125734 http://dx.doi.org/10.1021/acsami.2c22854 |
work_keys_str_mv | AT ostermannmarkus lascorbicacidtreatmentofelectrochemicalgraphenenanosheetsreductionoptimizationandapplicationfordeicingwateruptakepreventionandcorrosionresistance AT bilottopierluigi lascorbicacidtreatmentofelectrochemicalgraphenenanosheetsreductionoptimizationandapplicationfordeicingwateruptakepreventionandcorrosionresistance AT kadlecmartin lascorbicacidtreatmentofelectrochemicalgraphenenanosheetsreductionoptimizationandapplicationfordeicingwateruptakepreventionandcorrosionresistance AT schodljurgen lascorbicacidtreatmentofelectrochemicalgraphenenanosheetsreductionoptimizationandapplicationfordeicingwateruptakepreventionandcorrosionresistance AT duchoslavjiri lascorbicacidtreatmentofelectrochemicalgraphenenanosheetsreductionoptimizationandapplicationfordeicingwateruptakepreventionandcorrosionresistance AT stogerpollachmichael lascorbicacidtreatmentofelectrochemicalgraphenenanosheetsreductionoptimizationandapplicationfordeicingwateruptakepreventionandcorrosionresistance AT lieberzeitpeter lascorbicacidtreatmentofelectrochemicalgraphenenanosheetsreductionoptimizationandapplicationfordeicingwateruptakepreventionandcorrosionresistance AT valtinermarkus lascorbicacidtreatmentofelectrochemicalgraphenenanosheetsreductionoptimizationandapplicationfordeicingwateruptakepreventionandcorrosionresistance |