Cargando…
FISHFactor: a probabilistic factor model for spatial transcriptomics data with subcellular resolution
MOTIVATION: Factor analysis is a widely used tool for unsupervised dimensionality reduction of high-throughput datasets in molecular biology, with recently proposed extensions designed specifically for spatial transcriptomics data. However, these methods expect (count) matrices as data input and are...
Autores principales: | Walter, Florin C, Stegle, Oliver, Velten, Britta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10176502/ https://www.ncbi.nlm.nih.gov/pubmed/37039825 http://dx.doi.org/10.1093/bioinformatics/btad183 |
Ejemplares similares
-
Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO
por: Velten, Britta, et al.
Publicado: (2022) -
Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST
por: Liu, Wei, et al.
Publicado: (2023) -
Multi‐Omics Factor Analysis—a framework for unsupervised integration of multi‐omics data sets
por: Argelaguet, Ricard, et al.
Publicado: (2018) -
MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data
por: Argelaguet, Ricard, et al.
Publicado: (2020) -
Spatial-proteomics reveals phospho-signaling dynamics at subcellular resolution
por: Martinez-Val, Ana, et al.
Publicado: (2021)