Cargando…
Waveguide-Integrated Light-Emitting Metal–Insulator–Graphene Tunnel Junctions
[Image: see text] Ultrafast interfacing of electrical and optical signals at the nanoscale is highly desired for on-chip applications including optical interconnects and data processing devices. Here, we report electrically driven nanoscale optical sources based on metal–insulator–graphene tunnel ju...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10176563/ https://www.ncbi.nlm.nih.gov/pubmed/37097286 http://dx.doi.org/10.1021/acs.nanolett.2c04975 |
Sumario: | [Image: see text] Ultrafast interfacing of electrical and optical signals at the nanoscale is highly desired for on-chip applications including optical interconnects and data processing devices. Here, we report electrically driven nanoscale optical sources based on metal–insulator–graphene tunnel junctions (MIG-TJs), featuring waveguided output with broadband spectral characteristics. Electrically driven inelastic tunneling in a MIG-TJ, realized by integrating a silver nanowire with graphene, provides broadband excitation of plasmonic modes in the junction with propagation lengths of several micrometers (∼10 times larger than that for metal–insulator–metal junctions), which therefore propagate toward the junction edge with low loss and couple to the nanowire waveguide with an efficiency of ∼70% (∼1000 times higher than that for metal–insulator–metal junctions). Alternatively, lateral coupling of the MIG-TJ to a semiconductor nanowire provides a platform for efficient outcoupling of electrically driven plasmonic signals to low-loss photonic waveguides, showing potential for applications at various integration levels. |
---|