Cargando…
BGWAS: Bayesian variable selection in linear mixed models with nonlocal priors for genome-wide association studies
BACKGROUND: Genome-wide association studies (GWAS) seek to identify single nucleotide polymorphisms (SNPs) that cause observed phenotypes. However, with highly correlated SNPs, correlated observations, and the number of SNPs being two orders of magnitude larger than the number of observations, GWAS...
Autores principales: | Williams, Jacob, Xu, Shuangshuang, Ferreira, Marco A. R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10176706/ https://www.ncbi.nlm.nih.gov/pubmed/37170185 http://dx.doi.org/10.1186/s12859-023-05316-x |
Ejemplares similares
-
BG2: Bayesian variable selection in generalized linear mixed models with nonlocal priors for non-Gaussian GWAS data
por: Xu, Shuangshuang, et al.
Publicado: (2023) -
bGWAS: an R package to perform Bayesian genome wide association studies
por: Mounier, Ninon, et al.
Publicado: (2020) -
Bacterial Genome Wide Association Studies (bGWAS) and Transcriptomics Identifies Cryptic Antimicrobial Resistance Mechanisms in Acinetobacter baumannii
por: Roe, Chandler, et al.
Publicado: (2020) -
Variable Selection Using Nonlocal Priors in High-Dimensional Generalized Linear Models With Application to fMRI Data Analysis
por: Cao, Xuan, et al.
Publicado: (2020) -
Integrative Bayesian variable selection with gene-based informative priors for genome-wide association studies
por: Zhang, Xiaoshuai, et al.
Publicado: (2014)