Cargando…
Reducing radiation dose for NN-based COVID-19 detection in helical chest CT using real-time monitored reconstruction [Image: see text]
Computed tomography is a powerful tool for medical examination, which plays a particularly important role in the investigation of acute diseases, such as COVID-19. A growing concern in relation to CT scans is the radiation to which the patients are exposed, and a lot of research is dedicated to meth...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10176897/ https://www.ncbi.nlm.nih.gov/pubmed/37215381 http://dx.doi.org/10.1016/j.eswa.2023.120425 |
Sumario: | Computed tomography is a powerful tool for medical examination, which plays a particularly important role in the investigation of acute diseases, such as COVID-19. A growing concern in relation to CT scans is the radiation to which the patients are exposed, and a lot of research is dedicated to methods and approaches to how to reduce the radiation dose in X-ray CT studies. In this paper, we propose a novel scanning protocol based on real-time monitored reconstruction for a helical chest CT using a pre-trained neural network model for COVID-19 detection as an expert. In a simulated study, for the first time, we proposed using per-slice stopping rules based on the COVID-19 detection neural network output to reduce the frequency of projection acquisition for portions of the scanning process. The proposed method allows reducing the total number of X-ray projections necessary for COVID-19 detection, and thus reducing the radiation dose, without a significant decrease in the prediction accuracy. The proposed protocol was evaluated on 163 patients from the COVID-CTset dataset, providing a mean dose reduction of 15.1% while the mean decrease in prediction accuracy amounted to only 1.9% achieving a Pareto improvement over a fixed protocol. |
---|