Cargando…
Nonnegative matrix factorization analysis and multiple machine learning methods identified IL17C and ACOXL as novel diagnostic biomarkers for atherosclerosis
BACKGROUND: Atherosclerosis is the common pathological basis for many cardiovascular and cerebrovascular diseases. The purpose of this study is to identify the diagnostic biomarkers related to atherosclerosis through machine learning algorithm. METHODS: Clinicopathological parameters and transcripto...
Autores principales: | Rao, Li, Peng, Bo, Li, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10176911/ https://www.ncbi.nlm.nih.gov/pubmed/37173646 http://dx.doi.org/10.1186/s12859-023-05244-w |
Ejemplares similares
-
Advances in Nonnegative Matrix and Tensor Factorization
por: Cichocki, A., et al.
Publicado: (2008) -
Feature related multi-view nonnegative matrix factorization for identifying conserved functional modules in multiple biological networks
por: Wang, Peizhuo, et al.
Publicado: (2018) -
Analysis of the Human Prostate-Specific Proteome Defined by Transcriptomics and Antibody-Based Profiling Identifies TMEM79 and ACOXL as Two Putative, Diagnostic Markers in Prostate Cancer
por: O'Hurley, Gillian, et al.
Publicado: (2015) -
Nonnegative Matrix Factorization with Gaussian Process Priors
por: Schmidt, Mikkel N., et al.
Publicado: (2008) -
Bayesian Inference for Nonnegative Matrix Factorisation Models
por: Cemgil, Ali Taylan
Publicado: (2009)