Cargando…
Reducing the risk of non-sterility of aseptic handling in hospital pharmacies, part C: applying risk assessment and risk control in practice
OBJECTIVES: To describe the application of the model described in part A and part B of this series of articles for risk assessment (RA) and risk control (RC) of non-sterility during aseptic handling. The model was applied in nine hospital pharmacies. METHODS: The starting point was an audit of each...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10176981/ https://www.ncbi.nlm.nih.gov/pubmed/34233906 http://dx.doi.org/10.1136/ejhpharm-2021-002747 |
Sumario: | OBJECTIVES: To describe the application of the model described in part A and part B of this series of articles for risk assessment (RA) and risk control (RC) of non-sterility during aseptic handling. The model was applied in nine hospital pharmacies. METHODS: The starting point was an audit of each hospital pharmacy. The determined risk reduction and remaining risks were entered into a risk assessment model. The corresponding risk prioritisation numbers (RPNs) for each source of risk were calculated and these values were summed up to a cumulative RPN. Subsequently, all hospital pharmacies started an improvement programme, using the risk assessment as input. Results of aseptic process simulation (APS) and microbiological monitoring (MM) were also collected. The participants were informed about their progress of risk reduction and results of APS and MM during the study period. At the end of the study (about 4 years after the start), a final assessment was executed by using a checklist with risk reducing measures for each source of risk. Additional risk reduction and remaining risks were put in an RA and RC template and corresponding RPN values and a new cumulative RPN were determined. RESULTS: At the start of the study differences in cumulative RPN values were relatively small (from 630 to 825). At the end they were relatively great (from 230 to 725), which illustrates a different sense of urgency for reducing the risk of non-sterility. Of all the risk reducing measures, a yearly audit of all operators had the greatest impact on reducing the risk of non-sterility. Except for glove prints, there was no correlation between process improvement (lower cumulative RPN) and results of microbiological controls. CONCLUSION: A systematic and science-based reduction of the risks of non-sterility can be done by using a checklist with risk reducing measures and an RA & RC template. Prospectively, the relevance of each risk reducing measure can be demonstrated by RPN calculations. Microbiological controls are an important part of the overall assurance of product quality. However, the results are less useful for assessing the risk of non-sterility. |
---|