Cargando…
Automated Deep Learning-Based Classification of Wilms Tumor Histopathology
SIMPLE SUMMARY: Wilms tumor (WT) is the most frequent pediatric tumor in children and shows highly variable histology, leading to variation in classification. Artificial intelligence-based automatic recognition holds the promise that this may be done in a more consistent way than human observers can...
Autores principales: | van der Kamp, Ananda, de Bel, Thomas, van Alst, Ludo, Rutgers, Jikke, van den Heuvel-Eibrink, Marry M., Mavinkurve-Groothuis, Annelies M. C., van der Laak, Jeroen, de Krijger, Ronald R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177041/ https://www.ncbi.nlm.nih.gov/pubmed/37174121 http://dx.doi.org/10.3390/cancers15092656 |
Ejemplares similares
-
Interobserver variability between experienced and inexperienced observers in the histopathological analysis of Wilms tumors: a pilot study for future algorithmic approach
por: Rutgers, Jikke J., et al.
Publicado: (2021) -
Somatic, Genetic and Epigenetic Changes in Nephrogenic Rests and Their Role in the Transformation to Wilms Tumors, a Systematic Review
por: Bánki, Tessa, et al.
Publicado: (2023) -
Prognostic Factors for Wilms Tumor Recurrence: A Review of the Literature
por: Groenendijk, Alissa, et al.
Publicado: (2021) -
TRIM28 variants and Wilms' tumour predisposition
por: Hol, Janna A, et al.
Publicado: (2021) -
Characteristics and Outcome of Children with Wilms Tumor Requiring Intensive Care Admission in First Line Therapy
por: Steur, Anouk, et al.
Publicado: (2022)