Cargando…
In Silico Analysis of miRNA-Mediated Genes in the Regulation of Dog Testes Development from Immature to Adult Form
SIMPLE SUMMARY: The objective of this investigation was to elucidate the association of miRNA-mediated genes in the regulation of dog testes development from immature to adult form by in-silico analysis. In silico analysis of differentially expressed (DE) testis miRNAs between healthy immature and m...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177090/ https://www.ncbi.nlm.nih.gov/pubmed/37174557 http://dx.doi.org/10.3390/ani13091520 |
Sumario: | SIMPLE SUMMARY: The objective of this investigation was to elucidate the association of miRNA-mediated genes in the regulation of dog testes development from immature to adult form by in-silico analysis. In silico analysis of differentially expressed (DE) testis miRNAs between healthy immature and mature dogs were performed using miRNet, STRING, and ClueGo programs. The determination of mRNA and protein expressions of predicted pivotal genes and their association with miRNA were studied. The predicted genes are involved in the governing of several key biological functions (cell cycle, cell proliferation, growth, maturation, survival, and apoptosis) in the testis as they evolve from immature to adult forms, mediated by several key signaling pathways (ErbB, p53, PI3K-Akt, VEGF, and JAK-STAT), cytokines and hormones (estrogen, GnRH, relaxin, thyroid hormone, and prolactin). Elucidation of DE-miRNA predicted genes’ specific roles, signal transduction pathways, and mechanisms, by mimics and inhibitors, which could perhaps offer diagnostic and therapeutic targets for infertility, cancer, and birth control. ABSTRACT: High-throughput in-silico techniques help us understand the role of individual proteins, protein–protein interaction, and their biological functions by corroborating experimental data as epitomized biological networks. The objective of this investigation was to elucidate the association of miRNA-mediated genes in the regulation of dog testes development from immature to adult form by in-silico analysis. Differentially expressed (DE) canine testis miRNAs between healthy immature (2.2 ± 0.13 months; n = 4) and mature (11 ± 1.0 months; n = 4) dogs were utilized in this investigation. In silico analysis was performed using miRNet, STRING, and ClueGo programs. The determination of mRNA and protein expressions of predicted pivotal genes and their association with miRNA were studied. The results showed protein–protein interaction for the upregulated miRNAs, which revealed 978 enriched biological processes GO terms and 127 KEGG enrichment pathways, and for the down-regulated miRNAs revealed 405 significantly enriched biological processes GO terms and 72 significant KEGG enrichment pathways (False Recovery Rate, p < 0.05). The in-silico analysis of DE-miRNA’s associated genes revealed their involvement in the governing of several key biological functions (cell cycle, cell proliferation, growth, maturation, survival, and apoptosis) in the testis as they evolve from immature to adult forms, mediated by several key signaling pathways (ErbB, p53, PI3K-Akt, VEGF and JAK-STAT), cytokines and hormones (estrogen, GnRH, relaxin, thyroid hormone, and prolactin). Elucidation of DE-miRNA predicted genes’ specific roles, signal transduction pathways, and mechanisms, by mimics and inhibitors, which could perhaps offer diagnostic and therapeutic targets for infertility, cancer, and birth control. |
---|