Cargando…
Federated Learning for Medical Image Analysis with Deep Neural Networks
Medical image analysis using deep neural networks (DNN) has demonstrated state-of-the-art performance in image classification and segmentation tasks, aiding disease diagnosis. The accuracy of the DNN is largely governed by the quality and quantity of the data used to train the model. However, for th...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177193/ https://www.ncbi.nlm.nih.gov/pubmed/37174925 http://dx.doi.org/10.3390/diagnostics13091532 |
Sumario: | Medical image analysis using deep neural networks (DNN) has demonstrated state-of-the-art performance in image classification and segmentation tasks, aiding disease diagnosis. The accuracy of the DNN is largely governed by the quality and quantity of the data used to train the model. However, for the medical images, the critical security and privacy concerns regarding sharing of local medical data across medical establishments precludes exploiting the full DNN potential for clinical diagnosis. The federated learning (FL) approach enables the use of local model’s parameters to train a global model, while ensuring data privacy and security. In this paper, we review the federated learning applications in medical image analysis with DNNs, highlight the security concerns, cover some efforts to improve FL model performance, and describe the challenges and future research directions. |
---|