Cargando…

The Impact of Acute Systemic Inflammation Secondary to Oesophagectomy and Anastomotic Leak on Computed Tomography Body Composition Analyses

SIMPLE SUMMARY: Measures of body composition have been used extensively for prognostication across an array of malignant and benign diseases. Systemic inflammation is both a key driver of cancer cachexia and a common finding in patients presenting with acute pathology. However, its influence on esti...

Descripción completa

Detalles Bibliográficos
Autores principales: Brown, Leo R., Ramage, Michael I., Dolan, Ross D., Sayers, Judith, Bruce, Nikki, Dick, Lachlan, Sami, Sharukh, McMillan, Donald C., Laird, Barry J. A., Wigmore, Stephen J., Skipworth, Richard J. E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177546/
https://www.ncbi.nlm.nih.gov/pubmed/37174044
http://dx.doi.org/10.3390/cancers15092577
Descripción
Sumario:SIMPLE SUMMARY: Measures of body composition have been used extensively for prognostication across an array of malignant and benign diseases. Systemic inflammation is both a key driver of cancer cachexia and a common finding in patients presenting with acute pathology. However, its influence on estimates of body composition remains poorly understood. Postoperative anastomotic leak represents a relatively unique opportunity to model the effects of acute, severe systemic inflammation on body composition. This study found that systemic inflammation has a marked effect on CT-derived estimates of body composition. Decreased quantities of skeletal muscle and increased measures of intramuscular and subcutaneous adipose were observed following the inflammatory insult. Radiodensity across muscle and adipose tissues trended towards that of water, likely secondary to oedema. Future research utilising body composition should be interpreted with consideration of the potential of influence of underlying inflammatory status. ABSTRACT: This study aimed to longitudinally assess CT body composition analyses in patients who experienced anastomotic leak post-oesophagectomy. Consecutive patients, between 1 January 2012 and 1 January 2022 were identified from a prospectively maintained database. Changes in computed tomography (CT) body composition at the third lumbar vertebral level (remote from the site of complication) were assessed across four time points where available: staging, pre-operative/post-neoadjuvant treatment, post-leak, and late follow-up. A total of 20 patients (median 65 years, 90% male) were included, with a total of 66 computed tomography (CT) scans analysed. Of these, 16 underwent neoadjuvant chemo(radio)therapy prior to oesophagectomy. Skeletal muscle index (SMI) was significantly reduced following neoadjuvant treatment (p < 0.001). Following the inflammatory response associated with surgery and anastomotic leak, a decrease in SMI (mean difference: −4.23 cm(2)/m(2), p < 0.001) was noted. Estimates of intramuscular and subcutaneous adipose tissue quantity conversely increased (both p < 0.001). Skeletal muscle density fell (mean difference: −5.42 HU, p = 0.049) while visceral and subcutaneous fat density were higher following anastomotic leak. Thus, all tissues trended towards the radiodensity of water. Although tissue radiodensity and subcutaneous fat area normalised on late follow-up scans, skeletal muscle index remained below pre-treatment levels.