Cargando…
hist2RNA: An Efficient Deep Learning Architecture to Predict Gene Expression from Breast Cancer Histopathology Images
SIMPLE SUMMARY: Breast cancer diagnosis and treatment can be improved by understanding the specific genetic makeup of a patient’s tumour. Currently, this genetic information is obtained through expensive and time-consuming molecular tests, which are not widely reimbursed by healthcare systems. To ad...
Autores principales: | Mondol, Raktim Kumar, Millar, Ewan K. A., Graham, Peter H., Browne, Lois, Sowmya, Arcot, Meijering, Erik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177559/ https://www.ncbi.nlm.nih.gov/pubmed/37174035 http://dx.doi.org/10.3390/cancers15092569 |
Ejemplares similares
-
Breast cancer histopathology image-based gene expression prediction using spatial transcriptomics data and deep learning
por: Rahaman, Md Mamunur, et al.
Publicado: (2023) -
Survival prediction in triple negative breast cancer using multiple instance learning of histopathological images
por: Sandarenu, Piumi, et al.
Publicado: (2022) -
The HistFactory tool
por: Cranmer, Kyle Stuart
Publicado: (2013) -
Estimation of three-dimensional chromatin morphology for nuclear classification and characterisation
por: Rana, Priyanka, et al.
Publicado: (2021) -
Data augmentation with improved regularisation and sampling for imbalanced blood cell image classification
por: Rana, Priyanka, et al.
Publicado: (2022)