Cargando…
Persistent Homology-Based Machine Learning Method for Filtering and Classifying Mammographic Microcalcification Images in Early Cancer Detection
SIMPLE SUMMARY: The appearance of microcalcifications in mammogram images is an essential predictor for radiologists to detect early-stage breast cancer. This study aims to demonstrate the strength of persistent homology (PH) in noise filtering and feature extraction integrated with machine learning...
Autores principales: | Malek, Aminah Abdul, Alias, Mohd Almie, Razak, Fatimah Abdul, Noorani, Mohd Salmi Md, Mahmud, Rozi, Zulkepli, Nur Fariha Syaqina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177619/ https://www.ncbi.nlm.nih.gov/pubmed/37174071 http://dx.doi.org/10.3390/cancers15092606 |
Ejemplares similares
-
Using persistent homology as preprocessing of early warning signals for critical transition in flood
por: Syed Musa, Syed Mohamad Sadiq, et al.
Publicado: (2021) -
An Early Warning System for Flood Detection Using Critical Slowing Down
por: Syed Musa, Syed Mohamad Sadiq, et al.
Publicado: (2020) -
Predictors of mammographic microcalcifications
por: Azam, Shadi, et al.
Publicado: (2020) -
Image-guided biopsy of mammographic microcalcifications
por: Vinayagam, R, et al.
Publicado: (2006) -
Mammographic microcalcifications and risk of breast cancer
por: Azam, Shadi, et al.
Publicado: (2021)