Cargando…

A scale-free universal relational information matrix (N-space) reconciles the information problem: N-space as the fabric of reality

Cellular measurement is a crucial faculty in living systems, and exaptations are acknowledged as a significant source of evolutionary innovation. However, the possibility that the origin of biological order is predicated on an exaptation of the measurement of information from the abiotic realm has n...

Descripción completa

Detalles Bibliográficos
Autor principal: Miller, William B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177686/
https://www.ncbi.nlm.nih.gov/pubmed/37188326
http://dx.doi.org/10.1080/19420889.2023.2193006
Descripción
Sumario:Cellular measurement is a crucial faculty in living systems, and exaptations are acknowledged as a significant source of evolutionary innovation. However, the possibility that the origin of biological order is predicated on an exaptation of the measurement of information from the abiotic realm has not been previously explored. To support this hypothesis, the existence of a universal holographic relational information space-time matrix is proposed as a scale-free unification of abiotic and biotic information systems. In this framework, information is a universal property representing the interactions between matter and energy that can be subject to observation. Since observers are also universally distributed, information can be deemed the fundamental fabric of the universe. The novel concept of compartmentalizing this universal N-space information matrix into separate N-space partitions as nodes of informational density defined by Markov blankets and boundaries is introduced, permitting their applicability to both abiotic and biotic systems. Based on these N-space partitions, abiotic systems can derive meaningful information from the conditional settlement of quantum entanglement asymmetries and coherences between separately bounded quantum informational reference frames sufficient to be construed as a form of measurement. These conditional relationships are the precursor of the reiterating nested architecture of the N-space-derived information fields that characterize life and account for biological order. Accordingly, biotic measurement and biological N-space partitioning are exaptations of preexisting information processes within abiotic systems. Abiotic and biotic states thereby reconcile as differing forms of measurement of fundamental universal information. The essential difference between abiotic and biotic states lies within the attributes of the specific observer/detectors, thereby clarifying several contentious aspects of self-referential consciousness.