Cargando…
XAI–reduct: accuracy preservation despite dimensionality reduction for heart disease classification using explainable AI
Machine learning (ML) has been used for classification of heart diseases for almost a decade, although understanding of the internal working of the black boxes, i.e., non-interpretable models, remain a demanding problem. Another major challenge in such ML models is the curse of dimensionality leadin...
Autores principales: | Das, Surajit, Sultana, Mahamuda, Bhattacharya, Suman, Sengupta, Diganta, De, Debashis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177719/ https://www.ncbi.nlm.nih.gov/pubmed/37359323 http://dx.doi.org/10.1007/s11227-023-05356-3 |
Ejemplares similares
-
Hands-On Explainable AI (XAI) with Python
por: Rothman, Denis
Publicado: (2020) -
Ensuring Explainability and Dimensionality Reduction in a Multidimensional HSI World for Early XAI-Diagnostics of Plant Stress
por: Lysov, Maxim, et al.
Publicado: (2023) -
Earthquake-Induced Building-Damage Mapping Using Explainable AI (XAI)
por: Matin, Sahar S., et al.
Publicado: (2021) -
Urban Vegetation Mapping from Aerial Imagery Using Explainable AI (XAI)
por: Abdollahi, Abolfazl, et al.
Publicado: (2021) -
XAI-FR: Explainable AI-Based Face Recognition Using Deep Neural Networks
por: Rajpal, Ankit, et al.
Publicado: (2022)