Cargando…
An Instance Segmentation Model Based on Deep Learning for Intelligent Diagnosis of Uterine Myomas in MRI
Uterine myomas affect 70% of women of reproductive age, potentially impacting their fertility and health. Manual film reading is commonly used to identify uterine myomas, but it is time-consuming, laborious, and subjective. Clinical treatment requires the consideration of the positional relationship...
Autores principales: | Pan, Haixia, Zhang, Meng, Bai, Wenpei, Li, Bin, Wang, Hongqiang, Geng, Haotian, Zhao, Xiaoran, Zhang, Dongdong, Li, Yanan, Chen, Minghuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177878/ https://www.ncbi.nlm.nih.gov/pubmed/37174917 http://dx.doi.org/10.3390/diagnostics13091525 |
Ejemplares similares
-
WA-ResUNet: A Focused Tail Class MRI Medical Image Segmentation Algorithm
por: Pan, Haixia, et al.
Publicado: (2023) -
The Treatment of Uterine Fibro-Myoma
por: Edgar, John
Publicado: (1902) -
A Case of Uterine Myoma
por: Crockett, M. A., et al.
Publicado: (1897) -
Uterine Artery Embolization as Nonsurgical Treatment of Uterine Myomas
por: Tomislav, Strinic, et al.
Publicado: (2011) -
Uterine Artery Occlusion for Treatment of Symptomatic Uterine Myomas
por: Helal, Adel, et al.
Publicado: (2010)