Cargando…

Leveraging the 3-Chloro-4-fluorophenyl Motif to Identify Inhibitors of Tyrosinase from Agaricus bisporus

Tyrosinase (EC 1.14.18.1) is implicated in melanin production in various organisms. There is a growing body of evidence suggesting that the overproduction of melanin might be related to several skin pigmentation disorders as well as neurodegenerative processes in Parkinson’s disease. Based on this c...

Descripción completa

Detalles Bibliográficos
Autores principales: Mirabile, Salvatore, Ielo, Laura, Lombardo, Lisa, Ricci, Federico, Gitto, Rosaria, Germanò, Maria Paola, Pace, Vittorio, De Luca, Laura
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177926/
https://www.ncbi.nlm.nih.gov/pubmed/37175649
http://dx.doi.org/10.3390/ijms24097944
Descripción
Sumario:Tyrosinase (EC 1.14.18.1) is implicated in melanin production in various organisms. There is a growing body of evidence suggesting that the overproduction of melanin might be related to several skin pigmentation disorders as well as neurodegenerative processes in Parkinson’s disease. Based on this consideration, the development of tyrosinase inhibitors represents a new challenge to identify new agents in pharmaceutical and cosmetic applications. With the goal of identifying tyrosinase inhibitors from a synthetic source, we employed a cheap and facile preliminary assay using tyrosinase from Agaricus bisporus (AbTYR). We have previously demonstrated that the 4-fluorobenzyl moiety might be effective in interactions with the catalytic site of AbTYR; moreover, the additional chlorine atom exerted beneficial effects in enhancing inhibitory activity. Therefore, we planned the synthesis of new small compounds in which we incorporated the 3-chloro-4-fluorophenyl fragment into distinct chemotypes that revealed the ability to establish profitable contact with the AbTYR catalytic site. Our results confirmed that the presence of this fragment is an important structural feature to improve the AbTYR inhibition in these new chemotypes as well. Furthermore, docking analysis supported the best activity of the selected studied compounds, possessing higher potency when compared with reference compounds.