Cargando…
Large-Scale Protein Analysis of Experimental Retinal Artery Occlusion
Retinal artery occlusion (RAO) is a devastating condition with no effective treatment. The management of RAO could potentially be improved through an in-depth understanding of the molecular alterations in the condition. This study combined advanced proteomic techniques and an experimental model to u...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177937/ https://www.ncbi.nlm.nih.gov/pubmed/37175625 http://dx.doi.org/10.3390/ijms24097919 |
_version_ | 1785040741770199040 |
---|---|
author | Vestergaard, Nanna Cehofski, Lasse Jørgensen Alsing, Alexander Nørgård Kruse, Anders Nielsen, Jonas Ellegaard Schlosser, Anders Sorensen, Grith Lykke Honoré, Bent Vorum, Henrik |
author_facet | Vestergaard, Nanna Cehofski, Lasse Jørgensen Alsing, Alexander Nørgård Kruse, Anders Nielsen, Jonas Ellegaard Schlosser, Anders Sorensen, Grith Lykke Honoré, Bent Vorum, Henrik |
author_sort | Vestergaard, Nanna |
collection | PubMed |
description | Retinal artery occlusion (RAO) is a devastating condition with no effective treatment. The management of RAO could potentially be improved through an in-depth understanding of the molecular alterations in the condition. This study combined advanced proteomic techniques and an experimental model to uncover the retinal large-scale protein profile of RAO. In 13 pigs, RAO was induced with an argon laser and confirmed by fluorescein angiography. Left eyes serving as controls received a sham laser without inducing occlusion. Retinal samples were collected after one, three, or six days and analyzed with liquid chromatography—tandem mass spectrometry. In RAO, 36 proteins were differentially regulated on day one, 86 on day three, and 557 on day six. Upregulated proteins included clusterin, vitronectin, and vimentin, with several proteins increasing over time with a maximum on day six, including clusterin, vimentin, osteopontin, annexin-A, signal transducer, and the activator of transcription 3. On day six, RAO resulted in the upregulation of proteins involved in cellular response to stress, hemostasis, innate immune response, and cytokine signaling. Downregulated proteins were involved in transmission across chemical synapses and visual phototransduction. This study identified the upregulation of multiple inflammatory proteins in RAO and the downregulation of proteins involved in visual pathways. |
format | Online Article Text |
id | pubmed-10177937 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101779372023-05-13 Large-Scale Protein Analysis of Experimental Retinal Artery Occlusion Vestergaard, Nanna Cehofski, Lasse Jørgensen Alsing, Alexander Nørgård Kruse, Anders Nielsen, Jonas Ellegaard Schlosser, Anders Sorensen, Grith Lykke Honoré, Bent Vorum, Henrik Int J Mol Sci Article Retinal artery occlusion (RAO) is a devastating condition with no effective treatment. The management of RAO could potentially be improved through an in-depth understanding of the molecular alterations in the condition. This study combined advanced proteomic techniques and an experimental model to uncover the retinal large-scale protein profile of RAO. In 13 pigs, RAO was induced with an argon laser and confirmed by fluorescein angiography. Left eyes serving as controls received a sham laser without inducing occlusion. Retinal samples were collected after one, three, or six days and analyzed with liquid chromatography—tandem mass spectrometry. In RAO, 36 proteins were differentially regulated on day one, 86 on day three, and 557 on day six. Upregulated proteins included clusterin, vitronectin, and vimentin, with several proteins increasing over time with a maximum on day six, including clusterin, vimentin, osteopontin, annexin-A, signal transducer, and the activator of transcription 3. On day six, RAO resulted in the upregulation of proteins involved in cellular response to stress, hemostasis, innate immune response, and cytokine signaling. Downregulated proteins were involved in transmission across chemical synapses and visual phototransduction. This study identified the upregulation of multiple inflammatory proteins in RAO and the downregulation of proteins involved in visual pathways. MDPI 2023-04-27 /pmc/articles/PMC10177937/ /pubmed/37175625 http://dx.doi.org/10.3390/ijms24097919 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Vestergaard, Nanna Cehofski, Lasse Jørgensen Alsing, Alexander Nørgård Kruse, Anders Nielsen, Jonas Ellegaard Schlosser, Anders Sorensen, Grith Lykke Honoré, Bent Vorum, Henrik Large-Scale Protein Analysis of Experimental Retinal Artery Occlusion |
title | Large-Scale Protein Analysis of Experimental Retinal Artery Occlusion |
title_full | Large-Scale Protein Analysis of Experimental Retinal Artery Occlusion |
title_fullStr | Large-Scale Protein Analysis of Experimental Retinal Artery Occlusion |
title_full_unstemmed | Large-Scale Protein Analysis of Experimental Retinal Artery Occlusion |
title_short | Large-Scale Protein Analysis of Experimental Retinal Artery Occlusion |
title_sort | large-scale protein analysis of experimental retinal artery occlusion |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177937/ https://www.ncbi.nlm.nih.gov/pubmed/37175625 http://dx.doi.org/10.3390/ijms24097919 |
work_keys_str_mv | AT vestergaardnanna largescaleproteinanalysisofexperimentalretinalarteryocclusion AT cehofskilassejørgensen largescaleproteinanalysisofexperimentalretinalarteryocclusion AT alsingalexandernørgard largescaleproteinanalysisofexperimentalretinalarteryocclusion AT kruseanders largescaleproteinanalysisofexperimentalretinalarteryocclusion AT nielsenjonasellegaard largescaleproteinanalysisofexperimentalretinalarteryocclusion AT schlosseranders largescaleproteinanalysisofexperimentalretinalarteryocclusion AT sorensengrithlykke largescaleproteinanalysisofexperimentalretinalarteryocclusion AT honorebent largescaleproteinanalysisofexperimentalretinalarteryocclusion AT vorumhenrik largescaleproteinanalysisofexperimentalretinalarteryocclusion |