Cargando…

On the combinatorics of crystal structures. II. Number of Wyckoff sequences of a given subdivision complexity

Wyckoff sequences are a way of encoding combinatorial information about crystal structures of a given symmetry. In particular, they offer an easy access to the calculation of a crystal structure’s combinatorial, coordinational and configurational complexity, taking into account the individual multip...

Descripción completa

Detalles Bibliográficos
Autores principales: Hornfeck, Wolfgang, Červený, Kamil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10178003/
https://www.ncbi.nlm.nih.gov/pubmed/37165959
http://dx.doi.org/10.1107/S2053273323002437
Descripción
Sumario:Wyckoff sequences are a way of encoding combinatorial information about crystal structures of a given symmetry. In particular, they offer an easy access to the calculation of a crystal structure’s combinatorial, coordinational and configurational complexity, taking into account the individual multiplicities (combinatorial degrees of freedom) and arities (coordinational degrees of freedom) associated with each Wyckoff position. However, distinct Wyckoff sequences can yield the same total numbers of combinatorial and coordinational degrees of freedom. In this case, they share the same value for their Shannon entropy based subdivision complexity. The enumeration of Wyckoff sequences with this property is a combinatorial problem solved in this work, first in the general case of fixed subdivision complexity but non-specified Wyckoff sequence length, and second for the restricted case of Wyckoff sequences of both fixed subdivision complexity and fixed Wyckoff sequence length. The combinatorial results are accompanied by calculations of the combinatorial, coordinational, configurational and subdivision complexities, performed on Wyckoff sequences representing actual crystal structures.