Cargando…
Diagnosis Assistance in Colposcopy by Segmenting Acetowhite Epithelium Using U-Net with Images before and after Acetic Acid Solution Application
Colposcopy is an essential examination tool to identify cervical intraepithelial neoplasia (CIN), a precancerous lesion of the uterine cervix, and to sample its tissues for histological examination. In colposcopy, gynecologists visually identify the lesion highlighted by applying an acetic acid solu...
Autores principales: | Shinohara, Toshihiro, Murakami, Kosuke, Matsumura, Noriomi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10178183/ https://www.ncbi.nlm.nih.gov/pubmed/37174987 http://dx.doi.org/10.3390/diagnostics13091596 |
Ejemplares similares
-
Optimization of Classification Strategies of Acetowhite Temporal Patterns towards Improving Diagnostic Performance of Colposcopy
por: Gutiérrez-Fragoso, Karina, et al.
Publicado: (2017) -
Convolutional neural network-based classification of cervical intraepithelial neoplasias using colposcopic image segmentation for acetowhite epithelium
por: Kim, Jisoo, et al.
Publicado: (2022) -
Encoder-Weighted W-Net for Unsupervised Segmentation of Cervix Region in Colposcopy Images
por: Park, Jinhee, et al.
Publicado: (2022) -
RGB Channel Superposition Algorithm with Acetowhite Mask Images in a Cervical Cancer Classification Deep Learning Model
por: Kim, Yoon Ji, et al.
Publicado: (2022) -
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022)