Cargando…

Spray-Drying Microencapsulation of Andean Blueberry (Vaccinium meridionale Sw.) Anthocyanins Using Prickly Pear (Opuntia ficus indica L.) Peel Mucilage or Gum Arabic: A Comparative Study

The recovery of byproducts from the food industry is a promising approach to obtain hydrophilic biopolymers with potential health benefits. In this work, the mucilage obtained from the peel of the Opuntia ficus-indica (OFI) fruit was compared with gum arabic (GA) as wall materials for the microencap...

Descripción completa

Detalles Bibliográficos
Autores principales: Otálora, Maria Carolina, Wilches-Torres, Andrea, Gómez Castaño, Jovanny A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10178270/
https://www.ncbi.nlm.nih.gov/pubmed/37174349
http://dx.doi.org/10.3390/foods12091811
Descripción
Sumario:The recovery of byproducts from the food industry is a promising approach to obtain hydrophilic biopolymers with potential health benefits. In this work, the mucilage obtained from the peel of the Opuntia ficus-indica (OFI) fruit was compared with gum arabic (GA) as wall materials for the microencapsulation of Colombian blueberry anthocyanins, using the spray-drying process. For both types of microencapsulates, the following were determined: anthocyanin content (UV–vis and HPLC/MS-MS), total dietary content (enzymatic–gravimetric method), antioxidant activity (ORAC), color (CIELab parameters), morphology (SEM and particle size), and thermal behavior (DSC/TGA). Six different anthocyanins were identified by HPLC/MS-MS in the non-lyophilized Andean blueberry sample (LABP) and in the OFI-mucilage and GA microcapsules. OFI mucilage, compared to GA, favors the formation of larger spherical particles, a smoother surface without cracks, and greater thermal stability. The higher anthocyanin retention capacity in OFI microcapsules leads to higher antioxidant capacity and red coloration for this biomaterial. Consequently, the microencapsulation of anthocyanins with mucilage from the peel of the OFI fruit is proposed as a promising alternative for the protection and incorporation of this natural dye with high antioxidant capacity and dietary fiber content in new functional food/cosmetic formulations, while giving added value to the natural byproducts of OFI.