Cargando…

Identification of Piperlongumine as Potent Inhibitor of Necroptosis

PURPOSE: Excessive necroptosis contributes to the pathogenesis of several inflammatory and neurodegenerative diseases. Here, using a high-throughput screening approach, we investigated the anti-necroptosis effects of piperlongumine, an alkaloid isolated from the long pepper plant, in vitro and in a...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Xiaoyan, Li, Min, Ye, Zhi, You, Xiaoling, Wang, Jia, Xiao, Xin, Zhu, Guofeng, Wei, Jun, Zha, Yunhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10178306/
https://www.ncbi.nlm.nih.gov/pubmed/37188283
http://dx.doi.org/10.2147/DDDT.S397971
Descripción
Sumario:PURPOSE: Excessive necroptosis contributes to the pathogenesis of several inflammatory and neurodegenerative diseases. Here, using a high-throughput screening approach, we investigated the anti-necroptosis effects of piperlongumine, an alkaloid isolated from the long pepper plant, in vitro and in a mouse model of systemic inflammatory response syndrome (SIRS). METHODS: A natural compound library was screened for anti-necroptosis effects in cellular. The underlying mechanism of action of the top candidate piperlongumine was explored by quantifying the necroptosis marker phosphorylated receptor-interacting protein kinase 1 (p-RIPK1) by Western blotting. The anti-inflammatory effect of piperlongumine was assessed in a tumor necrosis factor α (TNFα)-induced SIRS model in mice. RESULTS: Among the compounds investigated, piperlongumine significantly rescued cell viability. The half maximal effective concentration (EC(50)) of piperlongumine for inhibiting necroptosis was 0.47 μM in HT-29 cells, 6.41 μM in FADD-deficient Jurkat cells, and 2.33 µM in CCRF-CEM cells, while the half maximal inhibitory concentration (IC(50)) was 95.4 µM in HT-29 cells, 93.02 µM in FADD-deficient Jurkat cells, and 161.1 µM in CCRF-CEM cells. Piperlongumine also significantly inhibited TNFα-induced intracellular RIPK1 Ser166 phosphorylation in cell lines and significantly prevented decreases in body temperature and improved survival in SIRS mice. CONCLUSION: As a potent necroptosis inhibitor, piperlongumine prevents phosphorylation of RIPK1 at its activation residue Ser166. Piperlongumine thus potently inhibits necroptosis at concentrations safe enough for human cells in vitro and inhibits TNFα-induced SIRS in mice. Piperlongumine has potential clinical translational value for the treatment of the spectrum of diseases associated with necroptosis, including SIRS.