Cargando…

Revealing the Second and the Third Causes of AgNPs Property to Restore the Bacterial Susceptibility to Antibiotics

The increase in bacterial resistance to antibiotics is a global problem for public health. In our previous works, it was shown that the application of AgNPs in cow mastitis treatment increased S. aureus and S. dysgalactiae susceptibility to 31 antibiotics due to a decrease in the bacterial efflux ef...

Descripción completa

Detalles Bibliográficos
Autores principales: Bogdanchikova, Nina, Maklakova, Maria, Villarreal-Gómez, Luis Jesús, Nefedova, Ekaterina, Shkil, Nikolay N., Plotnikov, Evgenii, Pestryakov, Alexey
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10178359/
https://www.ncbi.nlm.nih.gov/pubmed/37175561
http://dx.doi.org/10.3390/ijms24097854
Descripción
Sumario:The increase in bacterial resistance to antibiotics is a global problem for public health. In our previous works, it was shown that the application of AgNPs in cow mastitis treatment increased S. aureus and S. dysgalactiae susceptibility to 31 antibiotics due to a decrease in the bacterial efflux effect. The aim of the present work was to shed light on whether the change in adhesive and anti-lysozyme activities caused by AgNPs also contribute to the restoration of bacterial susceptibility to antibiotics. In vivo sampling was performed before and after cow mastitis treatments with antibiotics or AgNPs. The isolates were identified, and the adhesive and anti-lysozyme activities were assessed. These data were compared with the results obtained for in vitro pre-treatment of reference bacteria with AgNPs or antibiotics. The present study revealed that bacterial treatments in vitro and in vivo with AgNPs: (1) decrease the bacterial ability to adhere to cells to start an infection and (2) decrease bacterial anti-lysozyme activity, thereby enhancing the activity of lysozyme, a natural “antibiotic” present in living organisms. The obtained data contribute to the perspective of the future application of AgNPs for recovering the activity of antibiotics rapidly disappearing from the market.