Cargando…
Machine Learning Models for the Identification of Prognostic and Predictive Cancer Biomarkers: A Systematic Review
The identification of biomarkers plays a crucial role in personalized medicine, both in the clinical and research settings. However, the contrast between predictive and prognostic biomarkers can be challenging due to the overlap between the two. A prognostic biomarker predicts the future outcome of...
Autores principales: | Al-Tashi, Qasem, Saad, Maliazurina B., Muneer, Amgad, Qureshi, Rizwan, Mirjalili, Seyedali, Sheshadri, Ajay, Le, Xiuning, Vokes, Natalie I., Zhang, Jianjun, Wu, Jia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10178491/ https://www.ncbi.nlm.nih.gov/pubmed/37175487 http://dx.doi.org/10.3390/ijms24097781 |
Ejemplares similares
-
SwarmDeepSurv: swarm intelligence advances deep survival network for prognostic radiomics signatures in four solid cancers
por: Al-Tashi, Qasem, et al.
Publicado: (2023) -
Efficacy of immunotherapy in oncogene-driven non-small-cell lung
cancer
por: Vokes, Natalie I., et al.
Publicado: (2023) -
Evolutionary machine learning techniques: algorithms and applications
por: Mirjalili, Seyedali, et al.
Publicado: (2019) -
Leveraging hybrid biomarkers in clinical endpoint prediction
por: Saad, Maliazurina, et al.
Publicado: (2020) -
Evolutionary algorithms and neural networks: theory and applications
por: Mirjalili, Seyedali
Publicado: (2018)