Cargando…

Combined Structural and Computational Study of the mRubyFT Fluorescent Timer Locked in Its Blue Form

The mRubyFT is a monomeric genetically encoded fluorescent timer based on the mRuby2 fluorescent protein, which is characterized by the complete maturation of the blue form with the subsequent conversion to the red one. It has higher brightness in mammalian cells and higher photostability compared w...

Descripción completa

Detalles Bibliográficos
Autores principales: Boyko, Konstantin M., Khrenova, Maria G., Nikolaeva, Alena Y., Dorovatovskii, Pavel V., Vlaskina, Anna V., Subach, Oksana M., Popov, Vladimir O., Subach, Fedor V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10178504/
https://www.ncbi.nlm.nih.gov/pubmed/37175610
http://dx.doi.org/10.3390/ijms24097906
_version_ 1785040880176988160
author Boyko, Konstantin M.
Khrenova, Maria G.
Nikolaeva, Alena Y.
Dorovatovskii, Pavel V.
Vlaskina, Anna V.
Subach, Oksana M.
Popov, Vladimir O.
Subach, Fedor V.
author_facet Boyko, Konstantin M.
Khrenova, Maria G.
Nikolaeva, Alena Y.
Dorovatovskii, Pavel V.
Vlaskina, Anna V.
Subach, Oksana M.
Popov, Vladimir O.
Subach, Fedor V.
author_sort Boyko, Konstantin M.
collection PubMed
description The mRubyFT is a monomeric genetically encoded fluorescent timer based on the mRuby2 fluorescent protein, which is characterized by the complete maturation of the blue form with the subsequent conversion to the red one. It has higher brightness in mammalian cells and higher photostability compared with other fluorescent timers. A high-resolution structure is a known characteristic of the mRubyFT with the red form chromophore, but structural details of its blue form remain obscure. In order to obtain insight into this, we obtained an S148I variant of the mRubyFT (mRubyFT(S148I)) with the blocked over time blue form of the chromophore. X-ray data at a 1.8 Å resolution allowed us to propose a chromophore conformation and its interactions with the neighboring residues. The imidazolidinone moiety of the chromophore is completely matured, being a conjugated π-system. The methine bridge is not oxidized in the blue form bringing flexibility to the phenolic moiety that manifests itself in poor electron density. Integration of these data with the results of molecular dynamic simulation disclosed that the OH group of the phenolic moiety forms a hydrogen bond with the side chain of the T163 residue. A detailed comparison of mRubyFT(S148I) with other available structures of the blue form of fluorescent proteins, Blue102 and mTagBFP, revealed a number of characteristic differences. Molecular dynamic simulations with the combined quantum mechanic/molecular mechanic potentials demonstrated that the blue form exists in two protonation states, anion and zwitterion, both sharing enolate tautomeric forms of the C=C–O(−) fragment. These two forms have similar excitation energies, as evaluated by calculations. Finally, excited state molecular dynamic simulations showed that excitation of the chromophore in both protonation states leads to the same anionic fluorescent state. The data obtained shed light on the structural features and spectral properties of the blue form of the mRubyFT timer.
format Online
Article
Text
id pubmed-10178504
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-101785042023-05-13 Combined Structural and Computational Study of the mRubyFT Fluorescent Timer Locked in Its Blue Form Boyko, Konstantin M. Khrenova, Maria G. Nikolaeva, Alena Y. Dorovatovskii, Pavel V. Vlaskina, Anna V. Subach, Oksana M. Popov, Vladimir O. Subach, Fedor V. Int J Mol Sci Article The mRubyFT is a monomeric genetically encoded fluorescent timer based on the mRuby2 fluorescent protein, which is characterized by the complete maturation of the blue form with the subsequent conversion to the red one. It has higher brightness in mammalian cells and higher photostability compared with other fluorescent timers. A high-resolution structure is a known characteristic of the mRubyFT with the red form chromophore, but structural details of its blue form remain obscure. In order to obtain insight into this, we obtained an S148I variant of the mRubyFT (mRubyFT(S148I)) with the blocked over time blue form of the chromophore. X-ray data at a 1.8 Å resolution allowed us to propose a chromophore conformation and its interactions with the neighboring residues. The imidazolidinone moiety of the chromophore is completely matured, being a conjugated π-system. The methine bridge is not oxidized in the blue form bringing flexibility to the phenolic moiety that manifests itself in poor electron density. Integration of these data with the results of molecular dynamic simulation disclosed that the OH group of the phenolic moiety forms a hydrogen bond with the side chain of the T163 residue. A detailed comparison of mRubyFT(S148I) with other available structures of the blue form of fluorescent proteins, Blue102 and mTagBFP, revealed a number of characteristic differences. Molecular dynamic simulations with the combined quantum mechanic/molecular mechanic potentials demonstrated that the blue form exists in two protonation states, anion and zwitterion, both sharing enolate tautomeric forms of the C=C–O(−) fragment. These two forms have similar excitation energies, as evaluated by calculations. Finally, excited state molecular dynamic simulations showed that excitation of the chromophore in both protonation states leads to the same anionic fluorescent state. The data obtained shed light on the structural features and spectral properties of the blue form of the mRubyFT timer. MDPI 2023-04-26 /pmc/articles/PMC10178504/ /pubmed/37175610 http://dx.doi.org/10.3390/ijms24097906 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Boyko, Konstantin M.
Khrenova, Maria G.
Nikolaeva, Alena Y.
Dorovatovskii, Pavel V.
Vlaskina, Anna V.
Subach, Oksana M.
Popov, Vladimir O.
Subach, Fedor V.
Combined Structural and Computational Study of the mRubyFT Fluorescent Timer Locked in Its Blue Form
title Combined Structural and Computational Study of the mRubyFT Fluorescent Timer Locked in Its Blue Form
title_full Combined Structural and Computational Study of the mRubyFT Fluorescent Timer Locked in Its Blue Form
title_fullStr Combined Structural and Computational Study of the mRubyFT Fluorescent Timer Locked in Its Blue Form
title_full_unstemmed Combined Structural and Computational Study of the mRubyFT Fluorescent Timer Locked in Its Blue Form
title_short Combined Structural and Computational Study of the mRubyFT Fluorescent Timer Locked in Its Blue Form
title_sort combined structural and computational study of the mrubyft fluorescent timer locked in its blue form
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10178504/
https://www.ncbi.nlm.nih.gov/pubmed/37175610
http://dx.doi.org/10.3390/ijms24097906
work_keys_str_mv AT boykokonstantinm combinedstructuralandcomputationalstudyofthemrubyftfluorescenttimerlockedinitsblueform
AT khrenovamariag combinedstructuralandcomputationalstudyofthemrubyftfluorescenttimerlockedinitsblueform
AT nikolaevaalenay combinedstructuralandcomputationalstudyofthemrubyftfluorescenttimerlockedinitsblueform
AT dorovatovskiipavelv combinedstructuralandcomputationalstudyofthemrubyftfluorescenttimerlockedinitsblueform
AT vlaskinaannav combinedstructuralandcomputationalstudyofthemrubyftfluorescenttimerlockedinitsblueform
AT subachoksanam combinedstructuralandcomputationalstudyofthemrubyftfluorescenttimerlockedinitsblueform
AT popovvladimiro combinedstructuralandcomputationalstudyofthemrubyftfluorescenttimerlockedinitsblueform
AT subachfedorv combinedstructuralandcomputationalstudyofthemrubyftfluorescenttimerlockedinitsblueform